Run
10594025

Run 10594025

Task 3954 (Supervised Classification) MagicTelescope Uploaded 07-08-2023 by said edsa
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(32)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(32)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(32)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(32)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(32)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(32)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(32)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(32)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(32)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(32)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(32)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(32)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(32)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(32)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(32)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(32)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(32)_random_state30825
sklearn.ensemble._forest.RandomForestClassifier(32)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(32)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9371 ± 0.0058
Per class
Cross-validation details (10-fold Crossvalidation)
0.8779 ± 0.0073
Per class
Cross-validation details (10-fold Crossvalidation)
0.7289 ± 0.0167
Cross-validation details (10-fold Crossvalidation)
0.5976 ± 0.0093
Cross-validation details (10-fold Crossvalidation)
0.1942 ± 0.0037
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8798 ± 0.0068
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8795 ± 0.0066
Per class
Cross-validation details (10-fold Crossvalidation)
0.8798 ± 0.0068
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4259 ± 0.0082
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2989 ± 0.0058
Cross-validation details (10-fold Crossvalidation)
0.626 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
0.8544 ± 0.0101
Cross-validation details (10-fold Crossvalidation)