Run
10593883

Run 10593883

Task 3954 (Supervised Classification) MagicTelescope Uploaded 15-07-2023 by ck kc
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(30)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree. For a comparison between tree-based ensemble models see the example :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py`.
sklearn.ensemble._forest.RandomForestClassifier(30)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(30)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(30)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(30)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(30)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(30)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(30)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(30)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(30)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(30)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(30)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(30)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(30)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(30)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(30)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(30)_random_state14483
sklearn.ensemble._forest.RandomForestClassifier(30)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(30)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9371 ± 0.0061
Per class
Cross-validation details (10-fold Crossvalidation)
0.8801 ± 0.0075
Per class
Cross-validation details (10-fold Crossvalidation)
0.734 ± 0.017
Cross-validation details (10-fold Crossvalidation)
0.5987 ± 0.0094
Cross-validation details (10-fold Crossvalidation)
0.1938 ± 0.0037
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8821 ± 0.0071
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8818 ± 0.0071
Per class
Cross-validation details (10-fold Crossvalidation)
0.8821 ± 0.0071
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.425 ± 0.0081
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2983 ± 0.006
Cross-validation details (10-fold Crossvalidation)
0.6247 ± 0.0126
Cross-validation details (10-fold Crossvalidation)
0.8568 ± 0.0098
Cross-validation details (10-fold Crossvalidation)