Run
10593872

Run 10593872

Task 3 (Supervised Classification) kr-vs-kp Uploaded 01-07-2023 by Luís Miguel Matos
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer .ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=skle arn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._bas e.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklear n.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sk learn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNN Imputer)),BayesinClassifier=sklearn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(2)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(2)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(2)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(2)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(2)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "categorical", "step_name": "categorical", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(2)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(2)_verbose_feature_names_outtrue
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer)(2)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer)(2)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(44)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(44)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(44)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(44)_feature_name_combiner"concat"
sklearn.preprocessing._encoders.OneHotEncoder(44)_handle_unknown"infrequent_if_exist"
sklearn.preprocessing._encoders.OneHotEncoder(44)_max_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(44)_min_frequencynull
sklearn.preprocessing._encoders.OneHotEncoder(44)_sparsefalse
sklearn.preprocessing._encoders.OneHotEncoder(44)_sparse_outputtrue
sklearn.impute._base.SimpleImputer(48)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(48)_copytrue
sklearn.impute._base.SimpleImputer(48)_fill_valuenull
sklearn.impute._base.SimpleImputer(48)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(48)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(48)_strategy"most_frequent"
sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)(2)_memorynull
sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "variancethreshold", "step_name": "variancethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "knnimputer", "step_name": "knnimputer"}}]
sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)(2)_verbosefalse
sklearn.feature_selection._variance_threshold.VarianceThreshold(10)_threshold0.0
sklearn.preprocessing._data.StandardScaler(16)_copytrue
sklearn.preprocessing._data.StandardScaler(16)_with_meantrue
sklearn.preprocessing._data.StandardScaler(16)_with_stdtrue
sklearn.impute._knn.KNNImputer(3)_add_indicatorfalse
sklearn.impute._knn.KNNImputer(3)_copytrue
sklearn.impute._knn.KNNImputer(3)_keep_empty_featuresfalse
sklearn.impute._knn.KNNImputer(3)_metric"nan_euclidean"
sklearn.impute._knn.KNNImputer(3)_missing_valuesNaN
sklearn.impute._knn.KNNImputer(3)_n_neighbors5
sklearn.impute._knn.KNNImputer(3)_weights"uniform"
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)),BayesinClassifier=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)),BayesinClassifier=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Preprocessing", "step_name": "Preprocessing"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "BayesinClassifier", "step_name": "BayesinClassifier"}}]
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)),BayesinClassifier=sklearn.svm._classes.SVC)(1)_verbosefalse
sklearn.svm._classes.SVC(16)_C0.8122664973899175
sklearn.svm._classes.SVC(16)_break_tiesfalse
sklearn.svm._classes.SVC(16)_cache_size200
sklearn.svm._classes.SVC(16)_class_weightnull
sklearn.svm._classes.SVC(16)_coef01.1490926423856163
sklearn.svm._classes.SVC(16)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(16)_degree2
sklearn.svm._classes.SVC(16)_gamma"auto"
sklearn.svm._classes.SVC(16)_kernel"rbf"
sklearn.svm._classes.SVC(16)_max_iter-1
sklearn.svm._classes.SVC(16)_probabilitytrue
sklearn.svm._classes.SVC(16)_random_state36282
sklearn.svm._classes.SVC(16)_shrinkingtrue
sklearn.svm._classes.SVC(16)_tol0.001
sklearn.svm._classes.SVC(16)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9889 ± 0.0029
Per class
Cross-validation details (10-fold Crossvalidation)
0.9386 ± 0.0111
Per class
Cross-validation details (10-fold Crossvalidation)
0.8768 ± 0.0222
Cross-validation details (10-fold Crossvalidation)
0.8335 ± 0.0198
Cross-validation details (10-fold Crossvalidation)
0.0908 ± 0.0096
Cross-validation details (10-fold Crossvalidation)
0.499 ± 0
Cross-validation details (10-fold Crossvalidation)
0.9387 ± 0.0111
Cross-validation details (10-fold Crossvalidation)
3196
Per class
Cross-validation details (10-fold Crossvalidation)
0.9397 ± 0.0108
Per class
Cross-validation details (10-fold Crossvalidation)
0.9387 ± 0.0111
Cross-validation details (10-fold Crossvalidation)
0.9986 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.1819 ± 0.0192
Cross-validation details (10-fold Crossvalidation)
0.4995 ± 0
Cross-validation details (10-fold Crossvalidation)
0.218 ± 0.02
Cross-validation details (10-fold Crossvalidation)
0.4364 ± 0.04
Cross-validation details (10-fold Crossvalidation)
0.9374 ± 0.0112
Cross-validation details (10-fold Crossvalidation)