Run
10593869

Run 10593869

Task 2079 (Supervised Classification) eucalyptus Uploaded 30-06-2023 by Luís Miguel Matos
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer .ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=skle arn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._bas e.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklear n.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sk learn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNN Imputer)),Classifier=sklearn.ensemble._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(43)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(43)_copytrue
sklearn.impute._base.SimpleImputer(43)_fill_valuenull
sklearn.impute._base.SimpleImputer(43)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(43)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(43)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(43)_verbose"deprecated"
sklearn.ensemble._forest.RandomForestClassifier(28)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(28)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(28)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(28)_criterion"entropy"
sklearn.ensemble._forest.RandomForestClassifier(28)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(28)_max_features0.35102430042328286
sklearn.ensemble._forest.RandomForestClassifier(28)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(28)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(28)_min_impurity_decrease0.0028624598167969364
sklearn.ensemble._forest.RandomForestClassifier(28)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(28)_min_samples_split0.12689806549650384
sklearn.ensemble._forest.RandomForestClassifier(28)_min_weight_fraction_leaf0.08567125203677634
sklearn.ensemble._forest.RandomForestClassifier(28)_n_estimators84
sklearn.ensemble._forest.RandomForestClassifier(28)_n_jobs-1
sklearn.ensemble._forest.RandomForestClassifier(28)_oob_scoretrue
sklearn.ensemble._forest.RandomForestClassifier(28)_random_state6549
sklearn.ensemble._forest.RandomForestClassifier(28)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(28)_warm_startfalse
sklearn.preprocessing._encoders.OneHotEncoder(43)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(43)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(43)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(43)_handle_unknown"infrequent_if_exist"
sklearn.preprocessing._encoders.OneHotEncoder(43)_max_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(43)_min_frequencynull
sklearn.preprocessing._encoders.OneHotEncoder(43)_sparsefalse
sklearn.preprocessing._encoders.OneHotEncoder(43)_sparse_outputtrue
sklearn.preprocessing._data.StandardScaler(15)_copytrue
sklearn.preprocessing._data.StandardScaler(15)_with_meantrue
sklearn.preprocessing._data.StandardScaler(15)_with_stdtrue
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer)(1)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer)(1)_verbosefalse
sklearn.impute._knn.KNNImputer(2)_add_indicatorfalse
sklearn.impute._knn.KNNImputer(2)_copytrue
sklearn.impute._knn.KNNImputer(2)_keep_empty_featuresfalse
sklearn.impute._knn.KNNImputer(2)_metric"nan_euclidean"
sklearn.impute._knn.KNNImputer(2)_missing_valuesNaN
sklearn.impute._knn.KNNImputer(2)_n_neighbors5
sklearn.impute._knn.KNNImputer(2)_weights"uniform"
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "categorical", "step_name": "categorical", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer))(1)_verbose_feature_names_outtrue
sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)(1)_memorynull
sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "variancethreshold", "step_name": "variancethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "knnimputer", "step_name": "knnimputer"}}]
sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)(1)_verbosefalse
sklearn.feature_selection._variance_threshold.VarianceThreshold(9)_threshold0.0
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)),Classifier=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)),Classifier=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Preprocessing", "step_name": "Preprocessing"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Classifier", "step_name": "Classifier"}}]
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,simpleimputer=sklearn.impute._base.SimpleImputer),numeric=sklearn.pipeline.Pipeline(variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,standardscaler=sklearn.preprocessing._data.StandardScaler,knnimputer=sklearn.impute._knn.KNNImputer)),Classifier=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8766 ± 0.0236
Per class
Cross-validation details (10-fold Crossvalidation)
0.5353 ± 0.0282
Per class
Cross-validation details (10-fold Crossvalidation)
0.4489 ± 0.0425
Cross-validation details (10-fold Crossvalidation)
0.3578 ± 0.0214
Cross-validation details (10-fold Crossvalidation)
0.2432 ± 0.005
Cross-validation details (10-fold Crossvalidation)
0.3132 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.587 ± 0.0324
Cross-validation details (10-fold Crossvalidation)
736
Per class
Cross-validation details (10-fold Crossvalidation)
0.588 ± 0.0583
Per class
Cross-validation details (10-fold Crossvalidation)
0.587 ± 0.0324
Cross-validation details (10-fold Crossvalidation)
2.2621 ± 0.0054
Cross-validation details (10-fold Crossvalidation)
0.7764 ± 0.0162
Cross-validation details (10-fold Crossvalidation)
0.3957 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.3314 ± 0.0059
Cross-validation details (10-fold Crossvalidation)
0.8375 ± 0.015
Cross-validation details (10-fold Crossvalidation)
0.4947 ± 0.0306
Cross-validation details (10-fold Crossvalidation)