Run
10593842

Run 10593842

Task 9971 (Supervised Classification) ilpd Uploaded 28-06-2023 by Luís Miguel Matos
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer .ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncode r,numeric=sklearn.preprocessing._data.StandardScaler),Classifier=sklearn.en semble._weight_boosting.AdaBoostClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_algorithm"SAMME"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_base_estimator"deprecated"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_learning_rate0.07417606447032182
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_n_estimators187
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_random_state49844
sklearn.preprocessing._encoders.OneHotEncoder(43)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(43)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(43)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(43)_handle_unknown"infrequent_if_exist"
sklearn.preprocessing._encoders.OneHotEncoder(43)_max_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(43)_min_frequencynull
sklearn.preprocessing._encoders.OneHotEncoder(43)_sparsefalse
sklearn.preprocessing._encoders.OneHotEncoder(43)_sparse_outputtrue
sklearn.preprocessing._data.StandardScaler(15)_copytrue
sklearn.preprocessing._data.StandardScaler(15)_with_meantrue
sklearn.preprocessing._data.StandardScaler(15)_with_stdtrue
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,numeric=sklearn.preprocessing._data.StandardScaler)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,numeric=sklearn.preprocessing._data.StandardScaler)(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,numeric=sklearn.preprocessing._data.StandardScaler)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,numeric=sklearn.preprocessing._data.StandardScaler)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,numeric=sklearn.preprocessing._data.StandardScaler)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "categorical", "step_name": "categorical", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,numeric=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,numeric=sklearn.preprocessing._data.StandardScaler)(1)_verbose_feature_names_outtrue
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,numeric=sklearn.preprocessing._data.StandardScaler),Classifier=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,numeric=sklearn.preprocessing._data.StandardScaler),Classifier=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Preprocessing", "step_name": "Preprocessing"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Classifier", "step_name": "Classifier"}}]
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,numeric=sklearn.preprocessing._data.StandardScaler),Classifier=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.7151 ± 0.0596
Per class
Cross-validation details (10-fold Crossvalidation)
-0.1701 ± 0.0224
Cross-validation details (10-fold Crossvalidation)
0.4439 ± 0.0051
Cross-validation details (10-fold Crossvalidation)
0.4091 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.7136 ± 0.0076
Cross-validation details (10-fold Crossvalidation)
583
Per class
Cross-validation details (10-fold Crossvalidation)
0.7136 ± 0.0076
Cross-validation details (10-fold Crossvalidation)
0.8641 ± 0.01
Cross-validation details (10-fold Crossvalidation)
1.0851 ± 0.0126
Cross-validation details (10-fold Crossvalidation)
0.4521 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.4531 ± 0.0051
Cross-validation details (10-fold Crossvalidation)
1.0022 ± 0.0106
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)