Run
10593809

Run 10593809

Task 361127 (Supervised Classification) KDDCup09_upselling Uploaded 16-05-2023 by Eduardo Denadai
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(decisiontreeclassifier=sklearn.tree._classes.Deci sionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.tree._classes.DecisionTreeClassifier(38)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(38)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(38)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(38)_max_depth1
sklearn.tree._classes.DecisionTreeClassifier(38)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(38)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(38)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(38)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(38)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(38)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(38)_random_state41059
sklearn.tree._classes.DecisionTreeClassifier(38)_splitter"best"
sklearn.pipeline.Pipeline(decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeclassifier", "step_name": "decisiontreeclassifier"}}]
sklearn.pipeline.Pipeline(decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7917 ± 0.0109
Per class
Cross-validation details (10-fold Crossvalidation)
0.7935 ± 0.012
Per class
Cross-validation details (10-fold Crossvalidation)
0.5983 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
0.4357 ± 0.015
Cross-validation details (10-fold Crossvalidation)
0.2992 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.7991 ± 0.0109
Cross-validation details (10-fold Crossvalidation)
5128
Per class
Cross-validation details (10-fold Crossvalidation)
0.8357 ± 0.0079
Per class
Cross-validation details (10-fold Crossvalidation)
0.7991 ± 0.0109
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
0.5983 ± 0.0138
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.3868 ± 0.0074
Cross-validation details (10-fold Crossvalidation)
0.7736 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
0.7991 ± 0.0109
Cross-validation details (10-fold Crossvalidation)