Run
10593682

Run 10593682

Task 361444 (Supervised Classification) phoneme Uploaded 09-05-2023 by Takeaki Sakabe
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.svm._classes.SVC)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(43)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(43)_copytrue
sklearn.impute._base.SimpleImputer(43)_fill_valuenull
sklearn.impute._base.SimpleImputer(43)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(43)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(43)_strategy"mean"
sklearn.impute._base.SimpleImputer(43)_verbose"deprecated"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.svm._classes.SVC)(2)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.svm._classes.SVC)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.svm._classes.SVC)(2)_verbosefalse
sklearn.svm._classes.SVC(15)_C1.0
sklearn.svm._classes.SVC(15)_break_tiesfalse
sklearn.svm._classes.SVC(15)_cache_size200
sklearn.svm._classes.SVC(15)_class_weightnull
sklearn.svm._classes.SVC(15)_coef00.0
sklearn.svm._classes.SVC(15)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(15)_degree3
sklearn.svm._classes.SVC(15)_gamma"scale"
sklearn.svm._classes.SVC(15)_kernel"rbf"
sklearn.svm._classes.SVC(15)_max_iter-1
sklearn.svm._classes.SVC(15)_probabilityfalse
sklearn.svm._classes.SVC(15)_random_state55840
sklearn.svm._classes.SVC(15)_shrinkingtrue
sklearn.svm._classes.SVC(15)_tol0.001
sklearn.svm._classes.SVC(15)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8048 ± 0.0078
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.8387 ± 0.0056
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.6107 ± 0.0135
Cross-validation details (5 times 2-fold Crossvalidation)
0.5811 ± 0.0147
Cross-validation details (5 times 2-fold Crossvalidation)
0.1612 ± 0.0057
Cross-validation details (5 times 2-fold Crossvalidation)
0.4147 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.8388 ± 0.0057
Cross-validation details (5 times 2-fold Crossvalidation)
27020
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.8386 ± 0.0057
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.8388 ± 0.0057
Cross-validation details (5 times 2-fold Crossvalidation)
0.8732 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.3886 ± 0.0136
Cross-validation details (5 times 2-fold Crossvalidation)
0.4554 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.4015 ± 0.0071
Cross-validation details (5 times 2-fold Crossvalidation)
0.8817 ± 0.0155
Cross-validation details (5 times 2-fold Crossvalidation)
0.8048 ± 0.0078
Cross-validation details (5 times 2-fold Crossvalidation)