Run
10593678

Run 10593678

Task 361444 (Supervised Classification) phoneme Uploaded 09-05-2023 by Takeaki Sakabe
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.naive_bayes.BernoulliNB)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(43)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(43)_copytrue
sklearn.impute._base.SimpleImputer(43)_fill_valuenull
sklearn.impute._base.SimpleImputer(43)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(43)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(43)_strategy"mean"
sklearn.impute._base.SimpleImputer(43)_verbose"deprecated"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.naive_bayes.BernoulliNB)(1)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.naive_bayes.BernoulliNB)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.naive_bayes.BernoulliNB)(1)_verbosefalse
sklearn.naive_bayes.BernoulliNB(14)_alpha1.0
sklearn.naive_bayes.BernoulliNB(14)_binarize0.0
sklearn.naive_bayes.BernoulliNB(14)_class_priornull
sklearn.naive_bayes.BernoulliNB(14)_fit_priortrue
sklearn.naive_bayes.BernoulliNB(14)_force_alpha"warn"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8157 ± 0.0021
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.7516 ± 0.0092
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.3924 ± 0.0187
Cross-validation details (5 times 2-fold Crossvalidation)
0.2753 ± 0.0063
Cross-validation details (5 times 2-fold Crossvalidation)
0.2903 ± 0.0021
Cross-validation details (5 times 2-fold Crossvalidation)
0.4147 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.7558 ± 0.0116
Cross-validation details (5 times 2-fold Crossvalidation)
27020
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.749 ± 0.008
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.7558 ± 0.0116
Cross-validation details (5 times 2-fold Crossvalidation)
0.8732 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.6999 ± 0.005
Cross-validation details (5 times 2-fold Crossvalidation)
0.4554 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.4007 ± 0.0018
Cross-validation details (5 times 2-fold Crossvalidation)
0.88 ± 0.0038
Cross-validation details (5 times 2-fold Crossvalidation)
0.6902 ± 0.0094
Cross-validation details (5 times 2-fold Crossvalidation)