Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.naive_bayes.BernoulliNB)(1) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. |
sklearn.impute._base.SimpleImputer(43)_add_indicator | false |
sklearn.impute._base.SimpleImputer(43)_copy | true |
sklearn.impute._base.SimpleImputer(43)_fill_value | null |
sklearn.impute._base.SimpleImputer(43)_keep_empty_features | false |
sklearn.impute._base.SimpleImputer(43)_missing_values | NaN |
sklearn.impute._base.SimpleImputer(43)_strategy | "mean" |
sklearn.impute._base.SimpleImputer(43)_verbose | "deprecated" |
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.naive_bayes.BernoulliNB)(1)_memory | null |
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.naive_bayes.BernoulliNB)(1)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}] |
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.naive_bayes.BernoulliNB)(1)_verbose | false |
sklearn.naive_bayes.BernoulliNB(14)_alpha | 1.0 |
sklearn.naive_bayes.BernoulliNB(14)_binarize | 0.0 |
sklearn.naive_bayes.BernoulliNB(14)_class_prior | null |
sklearn.naive_bayes.BernoulliNB(14)_fit_prior | true |
sklearn.naive_bayes.BernoulliNB(14)_force_alpha | "warn" |
0.8157 ± 0.0021 Per class Cross-validation details (5 times 2-fold Crossvalidation)
|
0.7516 ± 0.0092 Per class Cross-validation details (5 times 2-fold Crossvalidation)
|
0.3924 ± 0.0187 Cross-validation details (5 times 2-fold Crossvalidation)
|
0.2753 ± 0.0063 Cross-validation details (5 times 2-fold Crossvalidation)
|
0.2903 ± 0.0021 Cross-validation details (5 times 2-fold Crossvalidation)
|
0.4147 ± 0 Cross-validation details (5 times 2-fold Crossvalidation)
|
0.7558 ± 0.0116 Cross-validation details (5 times 2-fold Crossvalidation)
|
27020 Per class Cross-validation details (5 times 2-fold Crossvalidation) |
0.749 ± 0.008 Per class Cross-validation details (5 times 2-fold Crossvalidation)
|
0.7558 ± 0.0116 Cross-validation details (5 times 2-fold Crossvalidation)
|
0.8732 ± 0 Cross-validation details (5 times 2-fold Crossvalidation)
|
0.6999 ± 0.005 Cross-validation details (5 times 2-fold Crossvalidation)
|
0.4554 ± 0 Cross-validation details (5 times 2-fold Crossvalidation)
|
0.4007 ± 0.0018 Cross-validation details (5 times 2-fold Crossvalidation)
|
0.88 ± 0.0038 Cross-validation details (5 times 2-fold Crossvalidation)
|
0.6902 ± 0.0094 Cross-validation details (5 times 2-fold Crossvalidation)
|