Run
10593669

Run 10593669

Task 361444 (Supervised Classification) phoneme Uploaded 09-05-2023 by Takeaki Sakabe
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.linear_model._ridge.RidgeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(43)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(43)_copytrue
sklearn.impute._base.SimpleImputer(43)_fill_valuenull
sklearn.impute._base.SimpleImputer(43)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(43)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(43)_strategy"mean"
sklearn.impute._base.SimpleImputer(43)_verbose"deprecated"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model._ridge.RidgeClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model._ridge.RidgeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model._ridge.RidgeClassifier)(1)_verbosefalse
sklearn.linear_model._ridge.RidgeClassifier(2)_alpha1.0
sklearn.linear_model._ridge.RidgeClassifier(2)_class_weightnull
sklearn.linear_model._ridge.RidgeClassifier(2)_copy_Xtrue
sklearn.linear_model._ridge.RidgeClassifier(2)_fit_intercepttrue
sklearn.linear_model._ridge.RidgeClassifier(2)_max_iternull
sklearn.linear_model._ridge.RidgeClassifier(2)_positivefalse
sklearn.linear_model._ridge.RidgeClassifier(2)_random_state1781
sklearn.linear_model._ridge.RidgeClassifier(2)_solver"auto"
sklearn.linear_model._ridge.RidgeClassifier(2)_tol0.0001

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6642 ± 0.0049
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.7391 ± 0.0038
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.3526 ± 0.0098
Cross-validation details (5 times 2-fold Crossvalidation)
0.3501 ± 0.0093
Cross-validation details (5 times 2-fold Crossvalidation)
0.25 ± 0.0036
Cross-validation details (5 times 2-fold Crossvalidation)
0.4147 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.75 ± 0.0036
Cross-validation details (5 times 2-fold Crossvalidation)
27020
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.7363 ± 0.004
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.75 ± 0.0036
Cross-validation details (5 times 2-fold Crossvalidation)
0.8732 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.6029 ± 0.0086
Cross-validation details (5 times 2-fold Crossvalidation)
0.4554 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.5 ± 0.0036
Cross-validation details (5 times 2-fold Crossvalidation)
1.0981 ± 0.0079
Cross-validation details (5 times 2-fold Crossvalidation)
0.6642 ± 0.0049
Cross-validation details (5 times 2-fold Crossvalidation)