Run
10593662

Run 10593662

Task 361444 (Supervised Classification) phoneme Uploaded 09-05-2023 by Takeaki Sakabe
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(43)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(43)_copytrue
sklearn.impute._base.SimpleImputer(43)_fill_valuenull
sklearn.impute._base.SimpleImputer(43)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(43)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(43)_strategy"mean"
sklearn.impute._base.SimpleImputer(43)_verbose"deprecated"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(2)_verbosefalse
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_algorithm"SAMME.R"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_base_estimator"deprecated"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_learning_rate1.0
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_n_estimators50
sklearn.ensemble._weight_boosting.AdaBoostClassifier(7)_random_state33775

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8848 ± 0.0038
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.812 ± 0.0051
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.5421 ± 0.0125
Cross-validation details (5 times 2-fold Crossvalidation)
-0.2675 ± 0.0079
Cross-validation details (5 times 2-fold Crossvalidation)
0.4742 ± 0.0019
Cross-validation details (5 times 2-fold Crossvalidation)
0.4147 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.8141 ± 0.0049
Cross-validation details (5 times 2-fold Crossvalidation)
27020
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.8107 ± 0.0051
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.8141 ± 0.0049
Cross-validation details (5 times 2-fold Crossvalidation)
0.8732 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
1.1435 ± 0.0045
Cross-validation details (5 times 2-fold Crossvalidation)
0.4554 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.4764 ± 0.0016
Cross-validation details (5 times 2-fold Crossvalidation)
1.0463 ± 0.0034
Cross-validation details (5 times 2-fold Crossvalidation)
0.7653 ± 0.0066
Cross-validation details (5 times 2-fold Crossvalidation)