Run
10593657

Run 10593657

Task 3954 (Supervised Classification) MagicTelescope Uploaded 27-04-2023 by LUCAS TRAN
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(29)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(29)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(29)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(29)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(29)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(29)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(29)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(29)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(29)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(29)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(29)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(29)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(29)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(29)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(29)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(29)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(29)_random_state42913
sklearn.ensemble._forest.RandomForestClassifier(29)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(29)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9364 ± 0.0066
Per class
Cross-validation details (10-fold Crossvalidation)
0.8791 ± 0.0066
Per class
Cross-validation details (10-fold Crossvalidation)
0.7316 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
0.5968 ± 0.0096
Cross-validation details (10-fold Crossvalidation)
0.1946 ± 0.0038
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.881 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8806 ± 0.0063
Per class
Cross-validation details (10-fold Crossvalidation)
0.881 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4267 ± 0.0084
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2993 ± 0.0062
Cross-validation details (10-fold Crossvalidation)
0.6269 ± 0.013
Cross-validation details (10-fold Crossvalidation)
0.8558 ± 0.0085
Cross-validation details (10-fold Crossvalidation)