Run
10593651

Run 10593651

Task 32 (Supervised Classification) pendigits Uploaded 19-04-2023 by Juheon Kwak
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.tree._classes.DecisionTreeClassifier)(26)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(26)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(26)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(26)_verbosefalse
sklearn.impute._base.SimpleImputer(44)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(44)_copytrue
sklearn.impute._base.SimpleImputer(44)_fill_valuenull
sklearn.impute._base.SimpleImputer(44)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(44)_strategy"mean"
sklearn.impute._base.SimpleImputer(44)_verbose0
sklearn.tree._classes.DecisionTreeClassifier(36)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(36)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(36)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(36)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(36)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(36)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(36)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(36)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(36)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(36)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(36)_random_state61033
sklearn.tree._classes.DecisionTreeClassifier(36)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.98 ± 0.0044
Per class
Cross-validation details (10-fold Crossvalidation)
0.964 ± 0.008
Per class
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.0089
Cross-validation details (10-fold Crossvalidation)
0.9623 ± 0.0084
Cross-validation details (10-fold Crossvalidation)
0.0072 ± 0.0016
Cross-validation details (10-fold Crossvalidation)
0.18 ± 0
Cross-validation details (10-fold Crossvalidation)
0.964 ± 0.008
Cross-validation details (10-fold Crossvalidation)
10992
Per class
Cross-validation details (10-fold Crossvalidation)
0.964 ± 0.0078
Per class
Cross-validation details (10-fold Crossvalidation)
0.964 ± 0.008
Cross-validation details (10-fold Crossvalidation)
3.3208 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.04 ± 0.0089
Cross-validation details (10-fold Crossvalidation)
0.3 ± 0
Cross-validation details (10-fold Crossvalidation)
0.0849 ± 0.0093
Cross-validation details (10-fold Crossvalidation)
0.283 ± 0.031
Cross-validation details (10-fold Crossvalidation)
0.9639 ± 0.0081
Cross-validation details (10-fold Crossvalidation)