Run
10592621

Run 10592621

Task 12 (Supervised Classification) mfeat-factors Uploaded 23-03-2023 by Takeaki Sakabe
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.neighbors._classification.KNeighborsClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(43)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(43)_copytrue
sklearn.impute._base.SimpleImputer(43)_fill_valuenull
sklearn.impute._base.SimpleImputer(43)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(43)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(43)_strategy"mean"
sklearn.impute._base.SimpleImputer(43)_verbose"deprecated"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.neighbors._classification.KNeighborsClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.neighbors._classification.KNeighborsClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.neighbors._classification.KNeighborsClassifier)(2)_verbosefalse
sklearn.neighbors._classification.KNeighborsClassifier(19)_algorithm"auto"
sklearn.neighbors._classification.KNeighborsClassifier(19)_leaf_size30
sklearn.neighbors._classification.KNeighborsClassifier(19)_metric"minkowski"
sklearn.neighbors._classification.KNeighborsClassifier(19)_metric_paramsnull
sklearn.neighbors._classification.KNeighborsClassifier(19)_n_jobsnull
sklearn.neighbors._classification.KNeighborsClassifier(19)_n_neighbors5
sklearn.neighbors._classification.KNeighborsClassifier(19)_p2
sklearn.neighbors._classification.KNeighborsClassifier(19)_weights"uniform"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.993 ± 0.0031
Per class
Cross-validation details (10-fold Crossvalidation)
0.951 ± 0.0125
Per class
Cross-validation details (10-fold Crossvalidation)
0.9456 ± 0.0138
Cross-validation details (10-fold Crossvalidation)
0.9445 ± 0.0082
Cross-validation details (10-fold Crossvalidation)
0.016 ± 0.002
Cross-validation details (10-fold Crossvalidation)
0.18
Cross-validation details (10-fold Crossvalidation)
0.951 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
2000
Per class
Cross-validation details (10-fold Crossvalidation)
0.9511 ± 0.0113
Per class
Cross-validation details (10-fold Crossvalidation)
0.951 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
3.3219
Cross-validation details (10-fold Crossvalidation)
0.089 ± 0.0109
Cross-validation details (10-fold Crossvalidation)
0.3
Cross-validation details (10-fold Crossvalidation)
0.0889 ± 0.0085
Cross-validation details (10-fold Crossvalidation)
0.2965 ± 0.0284
Cross-validation details (10-fold Crossvalidation)
0.951 ± 0.0124
Cross-validation details (10-fold Crossvalidation)