Run
10592531

Run 10592531

Task 12 (Supervised Classification) mfeat-factors Uploaded 23-03-2023 by Takeaki Sakabe
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.neural_network._multilayer_perceptron.MLPClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(43)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(43)_copytrue
sklearn.impute._base.SimpleImputer(43)_fill_valuenull
sklearn.impute._base.SimpleImputer(43)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(43)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(43)_strategy"mean"
sklearn.impute._base.SimpleImputer(43)_verbose"deprecated"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.neural_network._multilayer_perceptron.MLPClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.neural_network._multilayer_perceptron.MLPClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.neural_network._multilayer_perceptron.MLPClassifier)(2)_verbosefalse
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_activation"relu"
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_alpha0.0001
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_batch_size"auto"
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_beta_10.9
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_beta_20.999
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_early_stoppingfalse
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_epsilon1e-08
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_hidden_layer_sizes[100]
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_learning_rate"constant"
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_learning_rate_init0.001
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_max_fun15000
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_max_iter200
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_momentum0.9
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_n_iter_no_change10
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_nesterovs_momentumtrue
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_power_t0.5
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_random_state46404
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_shuffletrue
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_solver"adam"
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_tol0.0001
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_validation_fraction0.1
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_verbosefalse
sklearn.neural_network._multilayer_perceptron.MLPClassifier(4)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9947 ± 0.003
Per class
Cross-validation details (10-fold Crossvalidation)
0.9109 ± 0.0309
Per class
Cross-validation details (10-fold Crossvalidation)
0.9011 ± 0.0337
Cross-validation details (10-fold Crossvalidation)
0.9095 ± 0.0315
Cross-validation details (10-fold Crossvalidation)
0.0178 ± 0.006
Cross-validation details (10-fold Crossvalidation)
0.18
Cross-validation details (10-fold Crossvalidation)
0.911 ± 0.0303
Cross-validation details (10-fold Crossvalidation)
2000
Per class
Cross-validation details (10-fold Crossvalidation)
0.9113 ± 0.0258
Per class
Cross-validation details (10-fold Crossvalidation)
0.911 ± 0.0303
Cross-validation details (10-fold Crossvalidation)
3.3219
Cross-validation details (10-fold Crossvalidation)
0.0988 ± 0.0335
Cross-validation details (10-fold Crossvalidation)
0.3
Cross-validation details (10-fold Crossvalidation)
0.1292 ± 0.0216
Cross-validation details (10-fold Crossvalidation)
0.4307 ± 0.072
Cross-validation details (10-fold Crossvalidation)
0.911 ± 0.0303
Cross-validation details (10-fold Crossvalidation)