Run
10592483

Run 10592483

Task 15 (Supervised Classification) breast-w Uploaded 23-03-2023 by Takeaki Sakabe
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Add a single new tag. Use underscores for spaces. Press enter when done.
Add tag
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.ensemble._forest.ExtraTreesClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(43)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(43)_copytrue
sklearn.impute._base.SimpleImputer(43)_fill_valuenull
sklearn.impute._base.SimpleImputer(43)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(43)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(43)_strategy"mean"
sklearn.impute._base.SimpleImputer(43)_verbose"deprecated"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.ensemble._forest.ExtraTreesClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.ensemble._forest.ExtraTreesClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.ensemble._forest.ExtraTreesClassifier)(1)_verbosefalse
sklearn.ensemble._forest.ExtraTreesClassifier(2)_bootstrapfalse
sklearn.ensemble._forest.ExtraTreesClassifier(2)_ccp_alpha0.0
sklearn.ensemble._forest.ExtraTreesClassifier(2)_class_weightnull
sklearn.ensemble._forest.ExtraTreesClassifier(2)_criterion"gini"
sklearn.ensemble._forest.ExtraTreesClassifier(2)_max_depthnull
sklearn.ensemble._forest.ExtraTreesClassifier(2)_max_features"sqrt"
sklearn.ensemble._forest.ExtraTreesClassifier(2)_max_leaf_nodesnull
sklearn.ensemble._forest.ExtraTreesClassifier(2)_max_samplesnull
sklearn.ensemble._forest.ExtraTreesClassifier(2)_min_impurity_decrease0.0
sklearn.ensemble._forest.ExtraTreesClassifier(2)_min_samples_leaf1
sklearn.ensemble._forest.ExtraTreesClassifier(2)_min_samples_split2
sklearn.ensemble._forest.ExtraTreesClassifier(2)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.ExtraTreesClassifier(2)_n_estimators100
sklearn.ensemble._forest.ExtraTreesClassifier(2)_n_jobsnull
sklearn.ensemble._forest.ExtraTreesClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.ExtraTreesClassifier(2)_random_state6579
sklearn.ensemble._forest.ExtraTreesClassifier(2)_verbose0
sklearn.ensemble._forest.ExtraTreesClassifier(2)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9941 ± 0.0048
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.9850.98750.990.99250.9950.997511.0025
0.9686 ± 0.0231
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.90.920.940.960.9811.02
0.9309 ± 0.0511
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.80.850.90.9511.05
0.8848 ± 0.0333
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.80.8250.850.8750.90.9250.950.…0.975
0.0562 ± 0.0142
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.020.030.040.050.060.070.080.…0.09
0.4519 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4510.4520.4530.4540.4550.4560.…0.457
0.9685 ± 0.0231
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.90.920.940.960.9811.02
699
Per class
Cross-validation details (10-fold Crossvalidation)
0.969 ± 0.023
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.90.920.940.960.9811.02
0.9685 ± 0.0231
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.90.920.940.960.9811.02
0.9293 ± 0.0043
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.9250.92750.930.93250.9350.93750.940.9425
0.1244 ± 0.0312
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.050.0750.10.1250.150.1750.2
0.4753 ± 0.0015
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4740.4750.4760.4770.4780.4790.48
0.1586 ± 0.037
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.050.0750.10.1250.150.1750.20.…0.225
0.3337 ± 0.0775
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.10.150.20.250.30.350.40.450.5
0.9691 ± 0.0264
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.910.9250.950.9751.0…1.025
­