Run
10592331

Run 10592331

Task 168795 (Supervised Classification) shuttle Uploaded 22-03-2023 by Yinuo Guo
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.ensemble._forest.RandomForestClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(42)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(42)_copytrue
sklearn.impute._base.SimpleImputer(42)_fill_valuenull
sklearn.impute._base.SimpleImputer(42)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(42)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(42)_strategy"mean"
sklearn.impute._base.SimpleImputer(42)_verbose"deprecated"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.ensemble._forest.RandomForestClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.ensemble._forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.ensemble._forest.RandomForestClassifier)(2)_verbosefalse
sklearn.ensemble._forest.RandomForestClassifier(27)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(27)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(27)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(27)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(27)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(27)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(27)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(27)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(27)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(27)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(27)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(27)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(27)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(27)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(27)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(27)_random_state53760
sklearn.ensemble._forest.RandomForestClassifier(27)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(27)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

1
Per class
Cross-validation details (33% Holdout set)
0.9997
Per class
Cross-validation details (33% Holdout set)
0.9993
Cross-validation details (33% Holdout set)
0.9981
Cross-validation details (33% Holdout set)
0.0003
Cross-validation details (33% Holdout set)
0.1021
Cross-validation details (33% Holdout set)
0.9997
Cross-validation details (33% Holdout set)
19140
Per class
Cross-validation details (33% Holdout set)
0.9997
Per class
Cross-validation details (33% Holdout set)
0.9997
Cross-validation details (33% Holdout set)
0.9663
Cross-validation details (33% Holdout set)
0.0025
Cross-validation details (33% Holdout set)
0.2265
Cross-validation details (33% Holdout set)
0.0089
Cross-validation details (33% Holdout set)
0.0391
Cross-validation details (33% Holdout set)
0.8845
Cross-validation details (33% Holdout set)