Run
10592278

Run 10592278

Task 189906 (Supervised Classification) segment Uploaded 22-03-2023 by Yinuo Guo
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.tree._classes.DecisionTreeClassifier)(24)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(24)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(24)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(24)_verbosefalse
sklearn.impute._base.SimpleImputer(42)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(42)_copytrue
sklearn.impute._base.SimpleImputer(42)_fill_valuenull
sklearn.impute._base.SimpleImputer(42)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(42)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(42)_strategy"mean"
sklearn.impute._base.SimpleImputer(42)_verbose"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(34)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(34)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(34)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(34)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(34)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(34)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(34)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(34)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(34)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(34)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(34)_random_state54981
sklearn.tree._classes.DecisionTreeClassifier(34)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9388
Per class
Cross-validation details (33% Holdout set)
0.8949
Per class
Cross-validation details (33% Holdout set)
0.8774
Cross-validation details (33% Holdout set)
0.8853
Cross-validation details (33% Holdout set)
0.0308
Cross-validation details (33% Holdout set)
0.2449
Cross-validation details (33% Holdout set)
0.895
Cross-validation details (33% Holdout set)
762
Per class
Cross-validation details (33% Holdout set)
0.8958
Per class
Cross-validation details (33% Holdout set)
0.895
Cross-validation details (33% Holdout set)
2.8074
Cross-validation details (33% Holdout set)
0.1256
Cross-validation details (33% Holdout set)
0.3499
Cross-validation details (33% Holdout set)
0.1733
Cross-validation details (33% Holdout set)
0.4951
Cross-validation details (33% Holdout set)
0.8973
Cross-validation details (33% Holdout set)