Run
10592275

Run 10592275

Task 167152 (Supervised Classification) mfeat-factors Uploaded 22-03-2023 by Yinuo Guo
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(42)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(42)_copytrue
sklearn.impute._base.SimpleImputer(42)_fill_valuenull
sklearn.impute._base.SimpleImputer(42)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(42)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(42)_strategy"mean"
sklearn.impute._base.SimpleImputer(42)_verbose"deprecated"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.svm._classes.SVC)(1)_verbosefalse
sklearn.svm._classes.SVC(14)_C1.0
sklearn.svm._classes.SVC(14)_break_tiesfalse
sklearn.svm._classes.SVC(14)_cache_size200
sklearn.svm._classes.SVC(14)_class_weightnull
sklearn.svm._classes.SVC(14)_coef00.0
sklearn.svm._classes.SVC(14)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(14)_degree3
sklearn.svm._classes.SVC(14)_gamma"scale"
sklearn.svm._classes.SVC(14)_kernel"rbf"
sklearn.svm._classes.SVC(14)_max_iter-1
sklearn.svm._classes.SVC(14)_probabilityfalse
sklearn.svm._classes.SVC(14)_random_state50441
sklearn.svm._classes.SVC(14)_shrinkingtrue
sklearn.svm._classes.SVC(14)_tol0.001
sklearn.svm._classes.SVC(14)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9373
Per class
Cross-validation details (33% Holdout set)
0.8876
Per class
Cross-validation details (33% Holdout set)
0.8738
Cross-validation details (33% Holdout set)
0.8812
Cross-validation details (33% Holdout set)
0.0227
Cross-validation details (33% Holdout set)
0.18
Cross-validation details (33% Holdout set)
0.8864
Cross-validation details (33% Holdout set)
660
Per class
Cross-validation details (33% Holdout set)
0.9036
Per class
Cross-validation details (33% Holdout set)
0.8864
Cross-validation details (33% Holdout set)
3.3219
Cross-validation details (33% Holdout set)
0.1263
Cross-validation details (33% Holdout set)
0.3
Cross-validation details (33% Holdout set)
0.1508
Cross-validation details (33% Holdout set)
0.5025
Cross-validation details (33% Holdout set)
0.8908
Cross-validation details (33% Holdout set)