Run
10592042

Run 10592042

Task 36 (Supervised Classification) segment Uploaded 20-03-2023 by Takeaki Sakabe
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.neighbors._classification.KNeighborsClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(42)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(42)_copytrue
sklearn.impute._base.SimpleImputer(42)_fill_valuenull
sklearn.impute._base.SimpleImputer(42)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(42)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(42)_strategy"mean"
sklearn.impute._base.SimpleImputer(42)_verbose"deprecated"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_verbosefalse
sklearn.neighbors._classification.KNeighborsClassifier(18)_algorithm"auto"
sklearn.neighbors._classification.KNeighborsClassifier(18)_leaf_size30
sklearn.neighbors._classification.KNeighborsClassifier(18)_metric"minkowski"
sklearn.neighbors._classification.KNeighborsClassifier(18)_metric_paramsnull
sklearn.neighbors._classification.KNeighborsClassifier(18)_n_jobsnull
sklearn.neighbors._classification.KNeighborsClassifier(18)_n_neighbors5
sklearn.neighbors._classification.KNeighborsClassifier(18)_p2
sklearn.neighbors._classification.KNeighborsClassifier(18)_weights"uniform"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.993 ± 0.0026
Per class
Cross-validation details (10-fold Crossvalidation)
0.9408 ± 0.0085
Per class
Cross-validation details (10-fold Crossvalidation)
0.9313 ± 0.0096
Cross-validation details (10-fold Crossvalidation)
0.94 ± 0.0082
Cross-validation details (10-fold Crossvalidation)
0.0214 ± 0.0025
Cross-validation details (10-fold Crossvalidation)
0.2449
Cross-validation details (10-fold Crossvalidation)
0.9411 ± 0.0082
Cross-validation details (10-fold Crossvalidation)
2310
Per class
Cross-validation details (10-fold Crossvalidation)
0.9416 ± 0.0082
Per class
Cross-validation details (10-fold Crossvalidation)
0.9411 ± 0.0082
Cross-validation details (10-fold Crossvalidation)
2.8074
Cross-validation details (10-fold Crossvalidation)
0.0874 ± 0.0103
Cross-validation details (10-fold Crossvalidation)
0.3499
Cross-validation details (10-fold Crossvalidation)
0.1061 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.3032 ± 0.0204
Cross-validation details (10-fold Crossvalidation)
0.9411 ± 0.0082
Cross-validation details (10-fold Crossvalidation)