Run
10591887

Run 10591887

Task 52948 (Supervised Regression) liver-disorders Uploaded 12-03-2023 by PAVAN KUMAR PERUGU
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=skle arn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.S tandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.prep rocessing._encoders.OneHotEncoder)),decisiontreeregressor=sklearn.tree._cla sses.DecisionTreeRegressor)(3)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),decisiontreeregressor=sklearn.tree._classes.DecisionTreeRegressor)(3)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),decisiontreeregressor=sklearn.tree._classes.DecisionTreeRegressor)(3)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeregressor", "step_name": "decisiontreeregressor"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),decisiontreeregressor=sklearn.tree._classes.DecisionTreeRegressor)(3)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_verbose_feature_names_outtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(3)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(3)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(3)_verbosefalse
sklearn.impute._base.SimpleImputer(40)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(40)_copytrue
sklearn.impute._base.SimpleImputer(40)_fill_valuenull
sklearn.impute._base.SimpleImputer(40)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(40)_strategy"mean"
sklearn.impute._base.SimpleImputer(40)_verbose0
sklearn.preprocessing._data.StandardScaler(13)_copytrue
sklearn.preprocessing._data.StandardScaler(13)_with_meantrue
sklearn.preprocessing._data.StandardScaler(13)_with_stdtrue
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(12)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(12)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(12)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(39)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(39)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(39)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(39)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(39)_sparsetrue
sklearn.tree._classes.DecisionTreeRegressor(5)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeRegressor(5)_criterion"friedman_mse"
sklearn.tree._classes.DecisionTreeRegressor(5)_max_depthnull
sklearn.tree._classes.DecisionTreeRegressor(5)_max_features1.0
sklearn.tree._classes.DecisionTreeRegressor(5)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeRegressor(5)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeRegressor(5)_min_samples_leaf8
sklearn.tree._classes.DecisionTreeRegressor(5)_min_samples_split3
sklearn.tree._classes.DecisionTreeRegressor(5)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeRegressor(5)_random_state28540
sklearn.tree._classes.DecisionTreeRegressor(5)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

7 Evaluation measures

2.623 ± 0.3396
Cross-validation details (10-fold Crossvalidation)
345
Cross-validation details (10-fold Crossvalidation)
3.333 ± 0.5467
Cross-validation details (10-fold Crossvalidation)