Run
10591807

Run 10591807

Task 3954 (Supervised Classification) MagicTelescope Uploaded 24-01-2023 by José M. Sánchez
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(21)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(21)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(21)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(21)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(21)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(21)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(21)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(21)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(21)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(21)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(21)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(21)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(21)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(21)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(21)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(21)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(21)_random_state61688
sklearn.ensemble._forest.RandomForestClassifier(21)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(21)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9359 ± 0.0063
Per class
Cross-validation details (10-fold Crossvalidation)
0.8784 ± 0.0058
Per class
Cross-validation details (10-fold Crossvalidation)
0.7301 ± 0.0133
Cross-validation details (10-fold Crossvalidation)
0.5971 ± 0.0104
Cross-validation details (10-fold Crossvalidation)
0.1943 ± 0.0042
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8803 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8799 ± 0.0056
Per class
Cross-validation details (10-fold Crossvalidation)
0.8803 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4261 ± 0.0093
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2994 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.6271 ± 0.0131
Cross-validation details (10-fold Crossvalidation)
0.8551 ± 0.0078
Cross-validation details (10-fold Crossvalidation)