Run
10591790

Run 10591790

Task 3954 (Supervised Classification) MagicTelescope Uploaded 18-01-2023 by Indresh Kumar
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(20)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(20)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(20)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(20)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(20)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(20)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(20)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(20)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(20)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(20)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(20)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(20)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(20)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(20)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(20)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(20)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(20)_random_state48740
sklearn.ensemble._forest.RandomForestClassifier(20)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(20)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9365 ± 0.0063
Per class
Cross-validation details (10-fold Crossvalidation)
0.8813 ± 0.0074
Per class
Cross-validation details (10-fold Crossvalidation)
0.7365 ± 0.0168
Cross-validation details (10-fold Crossvalidation)
0.5984 ± 0.0101
Cross-validation details (10-fold Crossvalidation)
0.194 ± 0.004
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8832 ± 0.007
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8831 ± 0.0069
Per class
Cross-validation details (10-fold Crossvalidation)
0.8832 ± 0.007
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4254 ± 0.0088
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2988 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.6258 ± 0.0131
Cross-validation details (10-fold Crossvalidation)
0.8579 ± 0.0098
Cross-validation details (10-fold Crossvalidation)