Run
10591789

Run 10591789

Task 2295 (Supervised Regression) cholesterol Uploaded 17-01-2023 by Sharath Kumar Reddy Alijarla
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(pipeline=sklearn.pipeline.Pipeline(impute=sklearn .impute._base.SimpleImputer),variancethreshold=sklearn.feature_selection._v ariance_threshold.VarianceThreshold,decisiontreeregressor=sklearn.tree._cla sses.DecisionTreeRegressor)(3)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(30)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(30)_copytrue
sklearn.impute._base.SimpleImputer(30)_fill_valuenull
sklearn.impute._base.SimpleImputer(30)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(30)_strategy"mean"
sklearn.impute._base.SimpleImputer(30)_verbose0
sklearn.pipeline.Pipeline(pipeline=sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer),variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,decisiontreeregressor=sklearn.tree._classes.DecisionTreeRegressor)(3)_memorynull
sklearn.pipeline.Pipeline(pipeline=sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer),variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,decisiontreeregressor=sklearn.tree._classes.DecisionTreeRegressor)(3)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "pipeline", "step_name": "pipeline"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "variancethreshold", "step_name": "variancethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeregressor", "step_name": "decisiontreeregressor"}}]
sklearn.pipeline.Pipeline(pipeline=sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer),variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,decisiontreeregressor=sklearn.tree._classes.DecisionTreeRegressor)(3)_verbosefalse
sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer)(3)_memorynull
sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer)(3)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "impute", "step_name": "impute"}}]
sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer)(3)_verbosefalse
sklearn.feature_selection._variance_threshold.VarianceThreshold(7)_threshold0.0
sklearn.tree._classes.DecisionTreeRegressor(4)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeRegressor(4)_criterion"squared_error"
sklearn.tree._classes.DecisionTreeRegressor(4)_max_depthnull
sklearn.tree._classes.DecisionTreeRegressor(4)_max_featuresnull
sklearn.tree._classes.DecisionTreeRegressor(4)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeRegressor(4)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeRegressor(4)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeRegressor(4)_min_samples_split2
sklearn.tree._classes.DecisionTreeRegressor(4)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeRegressor(4)_random_state17634
sklearn.tree._classes.DecisionTreeRegressor(4)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

7 Evaluation measures

39.3139 ± 6.092
Cross-validation details (10-fold Crossvalidation)
303
Cross-validation details (10-fold Crossvalidation)
51.6914 ± 10.5853
Cross-validation details (10-fold Crossvalidation)