Run
10591783

Run 10591783

Task 2295 (Supervised Regression) cholesterol Uploaded 12-01-2023 by Sharath Kumar Reddy Alijarla
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(pipeline=sklearn.pipeline.Pipeline(impute=sklearn .impute._base.SimpleImputer),variancethreshold=sklearn.feature_selection._v ariance_threshold.VarianceThreshold,linearregression=sklearn.linear_model._ base.LinearRegression)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(31)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(31)_copytrue
sklearn.impute._base.SimpleImputer(31)_fill_valuenull
sklearn.impute._base.SimpleImputer(31)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(31)_strategy"mean"
sklearn.impute._base.SimpleImputer(31)_verbose"deprecated"
sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer)(1)_memorynull
sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "impute", "step_name": "impute"}}]
sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer)(1)_verbosefalse
sklearn.feature_selection._variance_threshold.VarianceThreshold(5)_threshold0.0
sklearn.pipeline.Pipeline(pipeline=sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer),variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,linearregression=sklearn.linear_model._base.LinearRegression)(1)_memorynull
sklearn.pipeline.Pipeline(pipeline=sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer),variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,linearregression=sklearn.linear_model._base.LinearRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "pipeline", "step_name": "pipeline"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "variancethreshold", "step_name": "variancethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "linearregression", "step_name": "linearregression"}}]
sklearn.pipeline.Pipeline(pipeline=sklearn.pipeline.Pipeline(impute=sklearn.impute._base.SimpleImputer),variancethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,linearregression=sklearn.linear_model._base.LinearRegression)(1)_verbosefalse
sklearn.linear_model._base.LinearRegression(4)_copy_Xtrue
sklearn.linear_model._base.LinearRegression(4)_fit_intercepttrue
sklearn.linear_model._base.LinearRegression(4)_n_jobsnull
sklearn.linear_model._base.LinearRegression(4)_normalize"deprecated"
sklearn.linear_model._base.LinearRegression(4)_positivefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

7 Evaluation measures

39.3139 ± 6.092
Cross-validation details (10-fold Crossvalidation)
303
Cross-validation details (10-fold Crossvalidation)
51.6914 ± 10.5853
Cross-validation details (10-fold Crossvalidation)