Run
10591775

Run 10591775

Task 6 (Supervised Classification) letter Uploaded 06-01-2023 by L LL
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.tree._classes.DecisionTreeClassifier)(22)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(22)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(22)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(22)_verbosefalse
sklearn.impute._base.SimpleImputer(36)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(36)_copytrue
sklearn.impute._base.SimpleImputer(36)_fill_valuenull
sklearn.impute._base.SimpleImputer(36)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(36)_strategy"mean"
sklearn.impute._base.SimpleImputer(36)_verbose"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(31)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(31)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(31)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(31)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(31)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(31)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(31)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(31)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(31)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(31)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(31)_random_state26816
sklearn.tree._classes.DecisionTreeClassifier(31)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9384 ± 0.0037
Per class
Cross-validation details (10-fold Crossvalidation)
0.8815 ± 0.0071
Per class
Cross-validation details (10-fold Crossvalidation)
0.8767 ± 0.0074
Cross-validation details (10-fold Crossvalidation)
0.88 ± 0.0071
Cross-validation details (10-fold Crossvalidation)
0.0091 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.074 ± 0
Cross-validation details (10-fold Crossvalidation)
0.8815 ± 0.0071
Cross-validation details (10-fold Crossvalidation)
20000
Per class
Cross-validation details (10-fold Crossvalidation)
0.8816 ± 0.0072
Per class
Cross-validation details (10-fold Crossvalidation)
0.8815 ± 0.0071
Cross-validation details (10-fold Crossvalidation)
4.6998 ± 0
Cross-validation details (10-fold Crossvalidation)
0.1233 ± 0.0074
Cross-validation details (10-fold Crossvalidation)
0.1923 ± 0
Cross-validation details (10-fold Crossvalidation)
0.0955 ± 0.0028
Cross-validation details (10-fold Crossvalidation)
0.4966 ± 0.0147
Cross-validation details (10-fold Crossvalidation)
0.8812 ± 0.0069
Cross-validation details (10-fold Crossvalidation)