Run
10591683

Run 10591683

Task 6 (Supervised Classification) letter Uploaded 30-10-2022 by Chris Lam
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(17)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(17)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(17)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(17)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(17)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(17)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(17)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(17)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(17)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(17)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(17)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(17)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(17)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(17)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(17)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(17)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(17)_random_state11314
sklearn.ensemble._forest.RandomForestClassifier(17)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(17)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9996 ± 0.0001
Per class
Cross-validation details (10-fold Crossvalidation)
0.9658 ± 0.0032
Per class
Cross-validation details (10-fold Crossvalidation)
0.9644 ± 0.0034
Cross-validation details (10-fold Crossvalidation)
0.9201 ± 0.002
Cross-validation details (10-fold Crossvalidation)
0.0137 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.074 ± 0
Cross-validation details (10-fold Crossvalidation)
0.9658 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
20000
Per class
Cross-validation details (10-fold Crossvalidation)
0.966 ± 0.0032
Per class
Cross-validation details (10-fold Crossvalidation)
0.9658 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
4.6998 ± 0
Cross-validation details (10-fold Crossvalidation)
0.1849 ± 0.0041
Cross-validation details (10-fold Crossvalidation)
0.1923 ± 0
Cross-validation details (10-fold Crossvalidation)
0.0631 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.3281 ± 0.005
Cross-validation details (10-fold Crossvalidation)
0.9655 ± 0.0032
Cross-validation details (10-fold Crossvalidation)