Run
10591682

Run 10591682

Task 119 (Learning Curve) zoo Uploaded 30-10-2022 by Chris Lam
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(17)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(17)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(17)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(17)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(17)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(17)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(17)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(17)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(17)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(17)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(17)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(17)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(17)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(17)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(17)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(17)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(17)_random_state55337
sklearn.ensemble._forest.RandomForestClassifier(17)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(17)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9991 ± 0.004
Per class
0.9593
Per class
0.949 ± 0.0821
0.9256 ± 0.0566
0.0238 ± 0.0134
0.2188 ± 0.0049
0.9614 ± 0.062
1010
Per class
0.9599
Per class
0.9614 ± 0.062
2.3926 ± 0.137
0.1087 ± 0.0601
0.3294 ± 0.0075
0.0857 ± 0.0407
0.26 ± 0.1215
0.8964 ± 0.1355