Run
10591646

Run 10591646

Task 14951 (Supervised Classification) eeg-eye-state Uploaded 16-10-2022 by Felix Dietrich
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.linear_model._logistic.LogisticRegression(8)Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.) This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note that regularization is applied by default**. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation, or no regularization. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only su...
sklearn.linear_model._logistic.LogisticRegression(8)_C1.0
sklearn.linear_model._logistic.LogisticRegression(8)_class_weightnull
sklearn.linear_model._logistic.LogisticRegression(8)_dualfalse
sklearn.linear_model._logistic.LogisticRegression(8)_fit_intercepttrue
sklearn.linear_model._logistic.LogisticRegression(8)_intercept_scaling1
sklearn.linear_model._logistic.LogisticRegression(8)_l1_rationull
sklearn.linear_model._logistic.LogisticRegression(8)_max_iter100
sklearn.linear_model._logistic.LogisticRegression(8)_multi_class"auto"
` for more details">sklearn.linear_model._logistic.LogisticRegression(8)_n_jobsnull
sklearn.linear_model._logistic.LogisticRegression(8)_penalty"l2"
sklearn.linear_model._logistic.LogisticRegression(8)_random_state250
sklearn.linear_model._logistic.LogisticRegression(8)_solver"lbfgs"
sklearn.linear_model._logistic.LogisticRegression(8)_tol0.0001
sklearn.linear_model._logistic.LogisticRegression(8)_verbose0
sklearn.linear_model._logistic.LogisticRegression(8)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6721 ± 0.0092
Per class
Cross-validation details (10-fold Crossvalidation)
0.6288 ± 0.0076
Per class
Cross-validation details (10-fold Crossvalidation)
0.25 ± 0.0154
Cross-validation details (10-fold Crossvalidation)
0.1072 ± 0.004
Cross-validation details (10-fold Crossvalidation)
0.4496 ± 0.0016
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6368 ± 0.0078
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.6348 ± 0.0087
Per class
Cross-validation details (10-fold Crossvalidation)
0.6368 ± 0.0078
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9088 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4744 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.9539 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.6223 ± 0.0075
Cross-validation details (10-fold Crossvalidation)