Run
10591610

Run 10591610

Task 146065 (Supervised Classification) monks-problems-2 Uploaded 13-10-2022 by VAIBHAV JAISWAL
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklea rn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardSc aler),model=sklearn.linear_model._logistic.LogisticRegression)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.preprocessing._data.StandardScaler(11)_copytrue
sklearn.preprocessing._data.StandardScaler(11)_with_meantrue
sklearn.preprocessing._data.StandardScaler(11)_with_stdtrue
sklearn.impute._base.SimpleImputer(30)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(30)_copytrue
sklearn.impute._base.SimpleImputer(30)_fill_valuenull
sklearn.impute._base.SimpleImputer(30)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(30)_strategy"mean"
sklearn.impute._base.SimpleImputer(30)_verbose0
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}]
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_verbosefalse
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.linear_model._logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.linear_model._logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "numerical", "step_name": "numerical"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "model", "step_name": "model"}}]
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.linear_model._logistic.LogisticRegression)(1)_verbosefalse
sklearn.linear_model._logistic.LogisticRegression(7)_C1.0
sklearn.linear_model._logistic.LogisticRegression(7)_class_weightnull
sklearn.linear_model._logistic.LogisticRegression(7)_dualfalse
sklearn.linear_model._logistic.LogisticRegression(7)_fit_intercepttrue
sklearn.linear_model._logistic.LogisticRegression(7)_intercept_scaling1
sklearn.linear_model._logistic.LogisticRegression(7)_l1_rationull
sklearn.linear_model._logistic.LogisticRegression(7)_max_iter5000
sklearn.linear_model._logistic.LogisticRegression(7)_multi_class"auto"
sklearn.linear_model._logistic.LogisticRegression(7)_n_jobsnull
sklearn.linear_model._logistic.LogisticRegression(7)_penalty"l2"
sklearn.linear_model._logistic.LogisticRegression(7)_random_state0
sklearn.linear_model._logistic.LogisticRegression(7)_solver"lbfgs"
sklearn.linear_model._logistic.LogisticRegression(7)_tol0.0001
sklearn.linear_model._logistic.LogisticRegression(7)_verbose0
sklearn.linear_model._logistic.LogisticRegression(7)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5582 ± 0.1253
Per class
Cross-validation details (10-fold Crossvalidation)
0.5124 ± 0.0146
Per class
Cross-validation details (10-fold Crossvalidation)
-0.036 ± 0.0584
Cross-validation details (10-fold Crossvalidation)
-0.0117 ± 0.0448
Cross-validation details (10-fold Crossvalidation)
0.4468 ± 0.0138
Cross-validation details (10-fold Crossvalidation)
0.4507 ± 0.0026
Cross-validation details (10-fold Crossvalidation)
0.6389 ± 0.0298
Cross-validation details (10-fold Crossvalidation)
601
Per class
Cross-validation details (10-fold Crossvalidation)
0.4278 ± 0.0098
Per class
Cross-validation details (10-fold Crossvalidation)
0.6389 ± 0.0298
Cross-validation details (10-fold Crossvalidation)
0.9274 ± 0.0078
Cross-validation details (10-fold Crossvalidation)
0.9913 ± 0.029
Cross-validation details (10-fold Crossvalidation)
0.4746 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4755 ± 0.013
Cross-validation details (10-fold Crossvalidation)
1.0019 ± 0.0259
Cross-validation details (10-fold Crossvalidation)
0.4861 ± 0.0239
Cross-validation details (10-fold Crossvalidation)