Run
10591510

Run 10591510

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 12-10-2022 by VAIBHAV JAISWAL
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklea rn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardSc aler),model=sklearn.ensemble._gb.GradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.preprocessing._data.StandardScaler(11)_copytrue
sklearn.preprocessing._data.StandardScaler(11)_with_meantrue
sklearn.preprocessing._data.StandardScaler(11)_with_stdtrue
sklearn.impute._base.SimpleImputer(30)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(30)_copytrue
sklearn.impute._base.SimpleImputer(30)_fill_valuenull
sklearn.impute._base.SimpleImputer(30)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(30)_strategy"mean"
sklearn.impute._base.SimpleImputer(30)_verbose0
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}]
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_verbosefalse
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "numerical", "step_name": "numerical"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "model", "step_name": "model"}}]
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_verbosefalse
sklearn.ensemble._gb.GradientBoostingClassifier(5)_ccp_alpha0.0
sklearn.ensemble._gb.GradientBoostingClassifier(5)_criterion"friedman_mse"
sklearn.ensemble._gb.GradientBoostingClassifier(5)_initnull
sklearn.ensemble._gb.GradientBoostingClassifier(5)_learning_rate0.1
sklearn.ensemble._gb.GradientBoostingClassifier(5)_loss"deviance"
sklearn.ensemble._gb.GradientBoostingClassifier(5)_max_depth3
sklearn.ensemble._gb.GradientBoostingClassifier(5)_max_featuresnull
sklearn.ensemble._gb.GradientBoostingClassifier(5)_max_leaf_nodesnull
sklearn.ensemble._gb.GradientBoostingClassifier(5)_min_impurity_decrease0.0
sklearn.ensemble._gb.GradientBoostingClassifier(5)_min_samples_leaf1
sklearn.ensemble._gb.GradientBoostingClassifier(5)_min_samples_split2
sklearn.ensemble._gb.GradientBoostingClassifier(5)_min_weight_fraction_leaf0.0
sklearn.ensemble._gb.GradientBoostingClassifier(5)_n_estimators100
sklearn.ensemble._gb.GradientBoostingClassifier(5)_n_iter_no_changenull
sklearn.ensemble._gb.GradientBoostingClassifier(5)_random_state0
sklearn.ensemble._gb.GradientBoostingClassifier(5)_subsample1.0
sklearn.ensemble._gb.GradientBoostingClassifier(5)_tol0.0001
sklearn.ensemble._gb.GradientBoostingClassifier(5)_validation_fraction0.1
sklearn.ensemble._gb.GradientBoostingClassifier(5)_verbose0
sklearn.ensemble._gb.GradientBoostingClassifier(5)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7135 ± 0.0569
Per class
Cross-validation details (10-fold Crossvalidation)
0.7444 ± 0.024
Per class
Cross-validation details (10-fold Crossvalidation)
0.2493 ± 0.0757
Cross-validation details (10-fold Crossvalidation)
0.1257 ± 0.0614
Cross-validation details (10-fold Crossvalidation)
0.3014 ± 0.0166
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.7714 ± 0.0144
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.7416 ± 0.0264
Per class
Cross-validation details (10-fold Crossvalidation)
0.7714 ± 0.0144
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.8303 ± 0.0449
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.402 ± 0.0184
Cross-validation details (10-fold Crossvalidation)
0.9441 ± 0.0424
Cross-validation details (10-fold Crossvalidation)
0.6047 ± 0.0362
Cross-validation details (10-fold Crossvalidation)