Run
10591477

Run 10591477

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 12-10-2022 by VAIBHAV JAISWAL
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklea rn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardSc aler),model=sklearn.neural_network._multilayer_perceptron.MLPClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.preprocessing._data.StandardScaler(11)_copytrue
sklearn.preprocessing._data.StandardScaler(11)_with_meantrue
sklearn.preprocessing._data.StandardScaler(11)_with_stdtrue
sklearn.impute._base.SimpleImputer(30)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(30)_copytrue
sklearn.impute._base.SimpleImputer(30)_fill_valuenull
sklearn.impute._base.SimpleImputer(30)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(30)_strategy"mean"
sklearn.impute._base.SimpleImputer(30)_verbose0
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}]
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_verbosefalse
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.neural_network._multilayer_perceptron.MLPClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.neural_network._multilayer_perceptron.MLPClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "numerical", "step_name": "numerical"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "model", "step_name": "model"}}]
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.neural_network._multilayer_perceptron.MLPClassifier)(1)_verbosefalse
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_activation"relu"
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_alpha0.0001
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_batch_size"auto"
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_beta_10.9
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_beta_20.999
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_early_stoppingfalse
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_epsilon1e-08
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_hidden_layer_sizes[100]
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_learning_rate"constant"
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_learning_rate_init0.001
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_max_fun15000
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_max_iter5000
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_momentum0.9
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_n_iter_no_change10
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_nesterovs_momentumtrue
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_power_t0.5
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_random_state0
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_shuffletrue
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_solver"adam"
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_tol0.0001
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_validation_fraction0.1
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_verbosefalse
sklearn.neural_network._multilayer_perceptron.MLPClassifier(1)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7594 ± 0.0432
Per class
Cross-validation details (10-fold Crossvalidation)
0.7822 ± 0.0307
Per class
Cross-validation details (10-fold Crossvalidation)
0.3605 ± 0.094
Cross-validation details (10-fold Crossvalidation)
0.1589 ± 0.0514
Cross-validation details (10-fold Crossvalidation)
0.295 ± 0.0129
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.8048 ± 0.0255
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.7874 ± 0.0342
Per class
Cross-validation details (10-fold Crossvalidation)
0.8048 ± 0.0255
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.8125 ± 0.0363
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.3864 ± 0.0166
Cross-validation details (10-fold Crossvalidation)
0.9075 ± 0.0396
Cross-validation details (10-fold Crossvalidation)
0.6517 ± 0.0435
Cross-validation details (10-fold Crossvalidation)