Run
10591380

Run 10591380

Task 3954 (Supervised Classification) MagicTelescope Uploaded 12-10-2022 by VAIBHAV JAISWAL
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklea rn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardSc aler),model=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.Hist GradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.preprocessing._data.StandardScaler(11)_copytrue
sklearn.preprocessing._data.StandardScaler(11)_with_meantrue
sklearn.preprocessing._data.StandardScaler(11)_with_stdtrue
sklearn.impute._base.SimpleImputer(30)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(30)_copytrue
sklearn.impute._base.SimpleImputer(30)_fill_valuenull
sklearn.impute._base.SimpleImputer(30)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(30)_strategy"mean"
sklearn.impute._base.SimpleImputer(30)_verbose0
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}]
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_verbosefalse
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "numerical", "step_name": "numerical"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "model", "step_name": "model"}}]
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbosefalse
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_categorical_featuresnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_early_stopping"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_l2_regularization0.0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_learning_rate0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_max_bins255
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_max_depthnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_max_iter100
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_max_leaf_nodes31
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_min_samples_leaf20
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_monotonic_cstnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_n_iter_no_change10
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_random_state0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_scoring"loss"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_tol1e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_validation_fraction0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(9)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9369 ± 0.0056
Per class
Cross-validation details (10-fold Crossvalidation)
0.8803 ± 0.0055
Per class
Cross-validation details (10-fold Crossvalidation)
0.7342 ± 0.0127
Cross-validation details (10-fold Crossvalidation)
0.63 ± 0.0084
Cross-validation details (10-fold Crossvalidation)
0.1775 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8823 ± 0.0051
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8823 ± 0.0049
Per class
Cross-validation details (10-fold Crossvalidation)
0.8823 ± 0.0051
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.3893 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2954 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
0.6187 ± 0.0116
Cross-validation details (10-fold Crossvalidation)
0.8564 ± 0.0081
Cross-validation details (10-fold Crossvalidation)