Run
10591355

Run 10591355

Task 3954 (Supervised Classification) MagicTelescope Uploaded 12-10-2022 by VAIBHAV JAISWAL
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklea rn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardSc aler),model=sklearn.ensemble._forest.ExtraTreesClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.preprocessing._data.StandardScaler(11)_copytrue
sklearn.preprocessing._data.StandardScaler(11)_with_meantrue
sklearn.preprocessing._data.StandardScaler(11)_with_stdtrue
sklearn.impute._base.SimpleImputer(30)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(30)_copytrue
sklearn.impute._base.SimpleImputer(30)_fill_valuenull
sklearn.impute._base.SimpleImputer(30)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(30)_strategy"mean"
sklearn.impute._base.SimpleImputer(30)_verbose0
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}]
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_verbosefalse
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._forest.ExtraTreesClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._forest.ExtraTreesClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "numerical", "step_name": "numerical"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "model", "step_name": "model"}}]
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._forest.ExtraTreesClassifier)(1)_verbosefalse
sklearn.ensemble._forest.ExtraTreesClassifier(1)_bootstrapfalse
sklearn.ensemble._forest.ExtraTreesClassifier(1)_ccp_alpha0.0
sklearn.ensemble._forest.ExtraTreesClassifier(1)_class_weightnull
sklearn.ensemble._forest.ExtraTreesClassifier(1)_criterion"gini"
sklearn.ensemble._forest.ExtraTreesClassifier(1)_max_depthnull
sklearn.ensemble._forest.ExtraTreesClassifier(1)_max_features"auto"
sklearn.ensemble._forest.ExtraTreesClassifier(1)_max_leaf_nodesnull
sklearn.ensemble._forest.ExtraTreesClassifier(1)_max_samplesnull
sklearn.ensemble._forest.ExtraTreesClassifier(1)_min_impurity_decrease0.0
sklearn.ensemble._forest.ExtraTreesClassifier(1)_min_samples_leaf1
sklearn.ensemble._forest.ExtraTreesClassifier(1)_min_samples_split2
sklearn.ensemble._forest.ExtraTreesClassifier(1)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.ExtraTreesClassifier(1)_n_estimators100
sklearn.ensemble._forest.ExtraTreesClassifier(1)_n_jobsnull
sklearn.ensemble._forest.ExtraTreesClassifier(1)_oob_scorefalse
sklearn.ensemble._forest.ExtraTreesClassifier(1)_random_state0
sklearn.ensemble._forest.ExtraTreesClassifier(1)_verbose0
sklearn.ensemble._forest.ExtraTreesClassifier(1)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9355 ± 0.0057
Per class
Cross-validation details (10-fold Crossvalidation)
0.8758 ± 0.0068
Per class
Cross-validation details (10-fold Crossvalidation)
0.7236 ± 0.0154
Cross-validation details (10-fold Crossvalidation)
0.5764 ± 0.008
Cross-validation details (10-fold Crossvalidation)
0.2052 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8787 ± 0.0064
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8797 ± 0.0064
Per class
Cross-validation details (10-fold Crossvalidation)
0.8787 ± 0.0064
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4499 ± 0.007
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3034 ± 0.0054
Cross-validation details (10-fold Crossvalidation)
0.6353 ± 0.0112
Cross-validation details (10-fold Crossvalidation)
0.8483 ± 0.0087
Cross-validation details (10-fold Crossvalidation)