Run
10590697

Run 10590697

Task 18 (Supervised Classification) mfeat-morphological Uploaded 11-10-2022 by VAIBHAV JAISWAL
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklea rn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardSc aler),model=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.preprocessing._data.StandardScaler(11)_copytrue
sklearn.preprocessing._data.StandardScaler(11)_with_meantrue
sklearn.preprocessing._data.StandardScaler(11)_with_stdtrue
sklearn.impute._base.SimpleImputer(30)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(30)_copytrue
sklearn.impute._base.SimpleImputer(30)_fill_valuenull
sklearn.impute._base.SimpleImputer(30)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(30)_strategy"mean"
sklearn.impute._base.SimpleImputer(30)_verbose0
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}]
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_verbosefalse
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "numerical", "step_name": "numerical"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "model", "step_name": "model"}}]
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_alpha0.0001
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_epsilon0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_l1_ratio0.15
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_loss"hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_max_iter1000
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_n_iter_no_change5
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_n_jobsnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_power_t0.5
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_random_state13031
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_tol0.001
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(3)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8294 ± 0.0155
Per class
Cross-validation details (10-fold Crossvalidation)
0.6855 ± 0.0293
Per class
Cross-validation details (10-fold Crossvalidation)
0.6589 ± 0.031
Cross-validation details (10-fold Crossvalidation)
0.679 ± 0.0292
Cross-validation details (10-fold Crossvalidation)
0.0614 ± 0.0056
Cross-validation details (10-fold Crossvalidation)
0.18
Cross-validation details (10-fold Crossvalidation)
0.693 ± 0.0279
Cross-validation details (10-fold Crossvalidation)
2000
Per class
Cross-validation details (10-fold Crossvalidation)
0.7009 ± 0.0369
Per class
Cross-validation details (10-fold Crossvalidation)
0.693 ± 0.0279
Cross-validation details (10-fold Crossvalidation)
3.3219
Cross-validation details (10-fold Crossvalidation)
0.3411 ± 0.031
Cross-validation details (10-fold Crossvalidation)
0.3
Cross-validation details (10-fold Crossvalidation)
0.2478 ± 0.011
Cross-validation details (10-fold Crossvalidation)
0.826 ± 0.0367
Cross-validation details (10-fold Crossvalidation)
0.693 ± 0.0279
Cross-validation details (10-fold Crossvalidation)