Run
10589618

Run 10589618

Task 3954 (Supervised Classification) MagicTelescope Uploaded 06-10-2022 by Ruslan Khal
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(17)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(17)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(17)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(17)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(17)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(17)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(17)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(17)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(17)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(17)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(17)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(17)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(17)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(17)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(17)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(17)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(17)_random_state18966
sklearn.ensemble._forest.RandomForestClassifier(17)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(17)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.936 ± 0.0053
Per class
Cross-validation details (10-fold Crossvalidation)
0.8786 ± 0.0073
Per class
Cross-validation details (10-fold Crossvalidation)
0.7306 ± 0.0165
Cross-validation details (10-fold Crossvalidation)
0.5967 ± 0.0091
Cross-validation details (10-fold Crossvalidation)
0.1944 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8806 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8803 ± 0.0067
Per class
Cross-validation details (10-fold Crossvalidation)
0.8806 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4263 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2998 ± 0.0054
Cross-validation details (10-fold Crossvalidation)
0.6279 ± 0.0113
Cross-validation details (10-fold Crossvalidation)
0.8551 ± 0.0096
Cross-validation details (10-fold Crossvalidation)