Run
10589007

Run 10589007

Task 145972 (Supervised Classification) credit-g Uploaded 27-09-2022 by Laurens Krudde
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,one hotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclass ifier=sklearn.tree._classes.DecisionTreeClassifier)(5)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(34)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(34)_copytrue
sklearn.impute._base.SimpleImputer(34)_fill_valuenull
sklearn.impute._base.SimpleImputer(34)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(34)_strategy"mean"
sklearn.impute._base.SimpleImputer(34)_verbose"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(28)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(28)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(28)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(28)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(28)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(28)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(28)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(28)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(28)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(28)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(28)_random_state50555
sklearn.tree._classes.DecisionTreeClassifier(28)_splitter"best"
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(5)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(5)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeclassifier", "step_name": "decisiontreeclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(5)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_verbose_feature_names_outtrue
sklearn.preprocessing._encoders.OneHotEncoder(33)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(33)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(33)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(33)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(33)_max_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(33)_min_frequencynull
sklearn.preprocessing._encoders.OneHotEncoder(33)_sparsetrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6307 ± 0.0625
Per class
Cross-validation details (10-fold Crossvalidation)
0.6906 ± 0.0449
Per class
Cross-validation details (10-fold Crossvalidation)
0.2622 ± 0.1154
Cross-validation details (10-fold Crossvalidation)
0.2109 ± 0.1086
Cross-validation details (10-fold Crossvalidation)
0.309 ± 0.0425
Cross-validation details (10-fold Crossvalidation)
0.4202
Cross-validation details (10-fold Crossvalidation)
0.691 ± 0.0425
Cross-validation details (10-fold Crossvalidation)
1000
Per class
Cross-validation details (10-fold Crossvalidation)
0.6901 ± 0.0495
Per class
Cross-validation details (10-fold Crossvalidation)
0.691 ± 0.0425
Cross-validation details (10-fold Crossvalidation)
0.8813
Cross-validation details (10-fold Crossvalidation)
0.7354 ± 0.1013
Cross-validation details (10-fold Crossvalidation)
0.4583
Cross-validation details (10-fold Crossvalidation)
0.5559 ± 0.0388
Cross-validation details (10-fold Crossvalidation)
1.213 ± 0.0846
Cross-validation details (10-fold Crossvalidation)
0.6307 ± 0.0625
Cross-validation details (10-fold Crossvalidation)