Run
10588981

Run 10588981

Task 146065 (Supervised Classification) monks-problems-2 Uploaded 27-09-2022 by VAIBHAV JAISWAL
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(categorical=sklearn.pipeline.Pipeline(Imputer=skl earn.impute._base.SimpleImputer,encoder=sklearn.preprocessing._encoders.One HotEncoder),model=sklearn.neighbors._classification.KNeighborsClassifier)(1 )Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.impute._base.SimpleImputer(30)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(30)_copytrue
sklearn.impute._base.SimpleImputer(30)_fill_value-1
sklearn.impute._base.SimpleImputer(30)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(30)_strategy"constant"
sklearn.impute._base.SimpleImputer(30)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(31)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(31)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(31)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(31)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(31)_sparsefalse
sklearn.neighbors._classification.KNeighborsClassifier(13)_algorithm"auto"
sklearn.neighbors._classification.KNeighborsClassifier(13)_leaf_size30
sklearn.neighbors._classification.KNeighborsClassifier(13)_metric"minkowski"
sklearn.neighbors._classification.KNeighborsClassifier(13)_metric_paramsnull
sklearn.neighbors._classification.KNeighborsClassifier(13)_n_jobsnull
sklearn.neighbors._classification.KNeighborsClassifier(13)_n_neighbors5
sklearn.neighbors._classification.KNeighborsClassifier(13)_p2
sklearn.neighbors._classification.KNeighborsClassifier(13)_weights"uniform"
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,encoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,encoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "encoder", "step_name": "encoder"}}]
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,encoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.pipeline.Pipeline(categorical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,encoder=sklearn.preprocessing._encoders.OneHotEncoder),model=sklearn.neighbors._classification.KNeighborsClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(categorical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,encoder=sklearn.preprocessing._encoders.OneHotEncoder),model=sklearn.neighbors._classification.KNeighborsClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "categorical", "step_name": "categorical"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "model", "step_name": "model"}}]
sklearn.pipeline.Pipeline(categorical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,encoder=sklearn.preprocessing._encoders.OneHotEncoder),model=sklearn.neighbors._classification.KNeighborsClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6514 ± 0.077
Per class
Cross-validation details (10-fold Crossvalidation)
0.5848 ± 0.0633
Per class
Cross-validation details (10-fold Crossvalidation)
0.0623 ± 0.1397
Cross-validation details (10-fold Crossvalidation)
0.0967 ± 0.0881
Cross-validation details (10-fold Crossvalidation)
0.3887 ± 0.0367
Cross-validation details (10-fold Crossvalidation)
0.4507 ± 0.0026
Cross-validation details (10-fold Crossvalidation)
0.5957 ± 0.0658
Cross-validation details (10-fold Crossvalidation)
601
Per class
Cross-validation details (10-fold Crossvalidation)
0.5781 ± 0.0647
Per class
Cross-validation details (10-fold Crossvalidation)
0.5957 ± 0.0658
Cross-validation details (10-fold Crossvalidation)
0.9274 ± 0.0078
Cross-validation details (10-fold Crossvalidation)
0.8624 ± 0.0791
Cross-validation details (10-fold Crossvalidation)
0.4746 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4795 ± 0.0307
Cross-validation details (10-fold Crossvalidation)
1.0102 ± 0.0624
Cross-validation details (10-fold Crossvalidation)
0.5298 ± 0.0666
Cross-validation details (10-fold Crossvalidation)