Run
10588635

Run 10588635

Task 37 (Supervised Classification) diabetes Uploaded 26-09-2022 by VAIBHAV JAISWAL
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklea rn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardSc aler),model=sklearn.ensemble._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.preprocessing._data.StandardScaler(11)_copytrue
sklearn.preprocessing._data.StandardScaler(11)_with_meantrue
sklearn.preprocessing._data.StandardScaler(11)_with_stdtrue
sklearn.impute._base.SimpleImputer(30)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(30)_copytrue
sklearn.impute._base.SimpleImputer(30)_fill_valuenull
sklearn.impute._base.SimpleImputer(30)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(30)_strategy"mean"
sklearn.impute._base.SimpleImputer(30)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(12)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(12)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(12)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(12)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(12)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(12)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(12)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(12)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(12)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(12)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(12)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(12)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(12)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(12)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(12)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(12)_random_state0
sklearn.ensemble._forest.RandomForestClassifier(12)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(12)_warm_startfalse
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}]
sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(2)_verbosefalse
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "numerical", "step_name": "numerical"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "model", "step_name": "model"}}]
sklearn.pipeline.Pipeline(numerical=sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),model=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8312 ± 0.0439
Per class
Cross-validation details (10-fold Crossvalidation)
0.7727 ± 0.0511
Per class
Cross-validation details (10-fold Crossvalidation)
0.494 ± 0.1152
Cross-validation details (10-fold Crossvalidation)
0.3159 ± 0.0622
Cross-validation details (10-fold Crossvalidation)
0.3166 ± 0.0235
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.776 ± 0.0488
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.7718 ± 0.0521
Per class
Cross-validation details (10-fold Crossvalidation)
0.776 ± 0.0488
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.6967 ± 0.0515
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.3973 ± 0.0255
Cross-validation details (10-fold Crossvalidation)
0.8336 ± 0.0539
Cross-validation details (10-fold Crossvalidation)
0.7406 ± 0.0569
Cross-validation details (10-fold Crossvalidation)