Run
10587922

Run 10587922

Task 119 (Learning Curve) zoo Uploaded 26-08-2022 by Ilin Tolovski
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(16)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(16)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(16)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(16)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(16)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(16)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(16)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(16)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(16)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(16)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(16)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(16)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(16)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(16)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(16)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(16)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(16)_random_state18593
sklearn.ensemble._forest.RandomForestClassifier(16)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(16)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9989 ± 0.0039
Per class
0.955
Per class
0.9449 ± 0.0833
0.9231 ± 0.0607
0.0239 ± 0.0137
0.2188 ± 0.0049
0.9584 ± 0.0624
1010
Per class
0.9552
Per class
0.9584 ± 0.0624
2.3926 ± 0.137
0.1091 ± 0.0616
0.3294 ± 0.0075
0.0876 ± 0.0424
0.266 ± 0.1266
0.8893 ± 0.1313