Run
10587872

Run 10587872

Task 3954 (Supervised Classification) MagicTelescope Uploaded 20-06-2022 by Iris Walter
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(12)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(12)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(12)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(12)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(12)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(12)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(12)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(12)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(12)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(12)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(12)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(12)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(12)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(12)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(12)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(12)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(12)_random_state7810
sklearn.ensemble._forest.RandomForestClassifier(12)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(12)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9357 ± 0.0056
Per class
Cross-validation details (10-fold Crossvalidation)
0.8802 ± 0.0076
Per class
Cross-validation details (10-fold Crossvalidation)
0.734 ± 0.0171
Cross-validation details (10-fold Crossvalidation)
0.5966 ± 0.0089
Cross-validation details (10-fold Crossvalidation)
0.1947 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8822 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.8821 ± 0.0072
Per class
Cross-validation details (10-fold Crossvalidation)
0.8822 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.9355 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.427 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2995 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
0.6273 ± 0.0115
Cross-validation details (10-fold Crossvalidation)
0.8564 ± 0.0095
Cross-validation details (10-fold Crossvalidation)