Run
10587784

Run 10587784

Task 359935 (Supervised Regression) wine_quality Uploaded 01-06-2022 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(easypreprocessor=dabl.preprocessing.EasyPreproces sor,simpleregressor=dabl.models.SimpleRegressor)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.pipeline.Pipeline(easypreprocessor=dabl.preprocessing.EasyPreprocessor,simpleregressor=dabl.models.SimpleRegressor)(1)_memorynull
sklearn.pipeline.Pipeline(easypreprocessor=dabl.preprocessing.EasyPreprocessor,simpleregressor=dabl.models.SimpleRegressor)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "easypreprocessor", "step_name": "easypreprocessor"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "simpleregressor", "step_name": "simpleregressor"}}]
sklearn.pipeline.Pipeline(easypreprocessor=dabl.preprocessing.EasyPreprocessor,simpleregressor=dabl.models.SimpleRegressor)(1)_verbosefalse
dabl.preprocessing.EasyPreprocessor(1)_force_imputationtrue
dabl.preprocessing.EasyPreprocessor(1)_scaletrue
dabl.preprocessing.EasyPreprocessor(1)_typesnull
dabl.preprocessing.EasyPreprocessor(1)_verbose0
dabl.models.SimpleRegressor(1)_random_state42
dabl.models.SimpleRegressor(1)_refittrue
dabl.models.SimpleRegressor(1)_shuffletrue
dabl.models.SimpleRegressor(1)_type_hintsnull
dabl.models.SimpleRegressor(1)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

7 Evaluation measures

0.6856 ± 0.0206
Cross-validation details (10-fold Crossvalidation)
6497
Cross-validation details (10-fold Crossvalidation)
0.8732 ± 0.0258
Cross-validation details (10-fold Crossvalidation)