Run
10587761

Run 10587761

Task 119 (Learning Curve) zoo Uploaded 17-04-2022 by Tan Tran
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(13)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(13)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(13)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(13)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(13)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(13)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(13)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(13)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(13)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(13)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(13)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(13)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(13)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(13)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(13)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(13)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(13)_random_state7542
sklearn.ensemble._forest.RandomForestClassifier(13)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(13)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9989 ± 0.0036
Per class
0.9606
Per class
0.9501 ± 0.0782
0.9224 ± 0.0598
0.0239 ± 0.0139
0.2188 ± 0.0049
0.9624 ± 0.0583
1010
Per class
0.9607
Per class
0.9624 ± 0.0583
2.3926 ± 0.137
0.1095 ± 0.0621
0.3294 ± 0.0075
0.0876 ± 0.0424
0.2659 ± 0.1266
0.8993 ± 0.1313