Run
10586126

Run 10586126

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 03-12-2021 by Marc Boel
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,one hotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingc lassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbose_feature_names_outtrue
sklearn.impute._base.SimpleImputer(28)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(28)_copytrue
sklearn.impute._base.SimpleImputer(28)_fill_valuenull
sklearn.impute._base.SimpleImputer(28)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(28)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(28)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(30)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(30)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(30)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(30)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(30)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(2)_verbosefalse
sklearn.ensemble._gb.GradientBoostingClassifier(4)_ccp_alpha0.0
sklearn.ensemble._gb.GradientBoostingClassifier(4)_criterion"friedman_mse"
sklearn.ensemble._gb.GradientBoostingClassifier(4)_initnull
sklearn.ensemble._gb.GradientBoostingClassifier(4)_learning_rate0.24642642440176293
sklearn.ensemble._gb.GradientBoostingClassifier(4)_loss"deviance"
sklearn.ensemble._gb.GradientBoostingClassifier(4)_max_depth3
sklearn.ensemble._gb.GradientBoostingClassifier(4)_max_featuresnull
sklearn.ensemble._gb.GradientBoostingClassifier(4)_max_leaf_nodes1085
sklearn.ensemble._gb.GradientBoostingClassifier(4)_min_impurity_decrease0.0
sklearn.ensemble._gb.GradientBoostingClassifier(4)_min_samples_leaf14
sklearn.ensemble._gb.GradientBoostingClassifier(4)_min_samples_split2
sklearn.ensemble._gb.GradientBoostingClassifier(4)_min_weight_fraction_leaf0.0
sklearn.ensemble._gb.GradientBoostingClassifier(4)_n_estimators100
sklearn.ensemble._gb.GradientBoostingClassifier(4)_n_iter_no_change9
sklearn.ensemble._gb.GradientBoostingClassifier(4)_random_state23869
sklearn.ensemble._gb.GradientBoostingClassifier(4)_subsample1.0
sklearn.ensemble._gb.GradientBoostingClassifier(4)_tol0.0001
sklearn.ensemble._gb.GradientBoostingClassifier(4)_validation_fraction0.27386132010897113
sklearn.ensemble._gb.GradientBoostingClassifier(4)_verbose0
sklearn.ensemble._gb.GradientBoostingClassifier(4)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9313 ± 0.0054
Per class
Cross-validation details (10-fold Crossvalidation)
0.8528 ± 0.0074
Per class
Cross-validation details (10-fold Crossvalidation)
0.7019 ± 0.0149
Cross-validation details (10-fold Crossvalidation)
0.5203 ± 0.0089
Cross-validation details (10-fold Crossvalidation)
0.2555 ± 0.0041
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.8532 ± 0.0073
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.8533 ± 0.0074
Per class
Cross-validation details (10-fold Crossvalidation)
0.8532 ± 0.0073
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.5165 ± 0.0083
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3305 ± 0.0048
Cross-validation details (10-fold Crossvalidation)
0.6645 ± 0.0097
Cross-validation details (10-fold Crossvalidation)
0.8492 ± 0.0075
Cross-validation details (10-fold Crossvalidation)