Run
10582178

Run 10582178

Task 2079 (Supervised Classification) eucalyptus Uploaded 02-12-2021 by Marc Boel
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,one hotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingc lassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(25)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(25)_copytrue
sklearn.impute._base.SimpleImputer(25)_fill_valuenull
sklearn.impute._base.SimpleImputer(25)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(25)_strategy"mean"
sklearn.impute._base.SimpleImputer(25)_verbose0
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(29)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(29)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(29)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(29)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(29)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_verbosefalse
sklearn.ensemble._gb.GradientBoostingClassifier(3)_ccp_alpha0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_criterion"friedman_mse"
sklearn.ensemble._gb.GradientBoostingClassifier(3)_initnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_learning_rate0.7791449503564905
sklearn.ensemble._gb.GradientBoostingClassifier(3)_loss"deviance"
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_depth3
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_featuresnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_leaf_nodes156
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_impurity_decrease0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_impurity_splitnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_samples_leaf108
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_samples_split2
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_weight_fraction_leaf0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_n_estimators100
sklearn.ensemble._gb.GradientBoostingClassifier(3)_n_iter_no_change13
sklearn.ensemble._gb.GradientBoostingClassifier(3)_random_state34115
sklearn.ensemble._gb.GradientBoostingClassifier(3)_subsample1.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_tol0.0001
sklearn.ensemble._gb.GradientBoostingClassifier(3)_validation_fraction0.3813771346160346
sklearn.ensemble._gb.GradientBoostingClassifier(3)_verbose0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8767 ± 0.0257
Per class
Cross-validation details (10-fold Crossvalidation)
0.6185 ± 0.0767
Per class
Cross-validation details (10-fold Crossvalidation)
0.5157 ± 0.0995
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0.0548
Cross-validation details (10-fold Crossvalidation)
0.1883 ± 0.0151
Cross-validation details (10-fold Crossvalidation)
0.3132 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.625 ± 0.0775
Cross-validation details (10-fold Crossvalidation)
736
Per class
Cross-validation details (10-fold Crossvalidation)
0.6188 ± 0.0773
Per class
Cross-validation details (10-fold Crossvalidation)
0.625 ± 0.0775
Cross-validation details (10-fold Crossvalidation)
2.2621 ± 0.0054
Cross-validation details (10-fold Crossvalidation)
0.6012 ± 0.0483
Cross-validation details (10-fold Crossvalidation)
0.3957 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.3258 ± 0.0219
Cross-validation details (10-fold Crossvalidation)
0.8232 ± 0.0552
Cross-validation details (10-fold Crossvalidation)
0.5847 ± 0.0811
Cross-validation details (10-fold Crossvalidation)