Run
10579905

Run 10579905

Task 37 (Supervised Classification) diabetes Uploaded 01-12-2021 by Marc Boel
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,one hotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingc lassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(25)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(25)_copytrue
sklearn.impute._base.SimpleImputer(25)_fill_valuenull
sklearn.impute._base.SimpleImputer(25)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(25)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(25)_verbose0
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(29)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(29)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(29)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(29)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(29)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_verbosefalse
sklearn.ensemble._gb.GradientBoostingClassifier(3)_ccp_alpha0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_criterion"friedman_mse"
sklearn.ensemble._gb.GradientBoostingClassifier(3)_initnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_learning_rate0.3769539214862043
sklearn.ensemble._gb.GradientBoostingClassifier(3)_loss"deviance"
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_depth3
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_featuresnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_leaf_nodes1401
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_impurity_decrease0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_impurity_splitnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_samples_leaf66
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_samples_split2
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_weight_fraction_leaf0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_n_estimators100
sklearn.ensemble._gb.GradientBoostingClassifier(3)_n_iter_no_change7
sklearn.ensemble._gb.GradientBoostingClassifier(3)_random_state6029
sklearn.ensemble._gb.GradientBoostingClassifier(3)_subsample1.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_tol0.0001
sklearn.ensemble._gb.GradientBoostingClassifier(3)_validation_fraction0.2559598821482275
sklearn.ensemble._gb.GradientBoostingClassifier(3)_verbose0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8243 ± 0.0428
Per class
Cross-validation details (10-fold Crossvalidation)
0.7734 ± 0.054
Per class
Cross-validation details (10-fold Crossvalidation)
0.4966 ± 0.1193
Cross-validation details (10-fold Crossvalidation)
0.3377 ± 0.0604
Cross-validation details (10-fold Crossvalidation)
0.3058 ± 0.0221
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.776 ± 0.0536
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.7724 ± 0.0558
Per class
Cross-validation details (10-fold Crossvalidation)
0.776 ± 0.0536
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.6728 ± 0.0484
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.4015 ± 0.0307
Cross-validation details (10-fold Crossvalidation)
0.8423 ± 0.0647
Cross-validation details (10-fold Crossvalidation)
0.7432 ± 0.0584
Cross-validation details (10-fold Crossvalidation)