Run
10577574

Run 10577574

Task 21 (Supervised Classification) car Uploaded 01-12-2021 by Marc Boel
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,one hotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingc lassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(25)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(25)_copytrue
sklearn.impute._base.SimpleImputer(25)_fill_valuenull
sklearn.impute._base.SimpleImputer(25)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(25)_strategy"median"
sklearn.impute._base.SimpleImputer(25)_verbose0
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(29)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(29)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(29)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(29)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(29)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_verbosefalse
sklearn.ensemble._gb.GradientBoostingClassifier(3)_ccp_alpha0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_criterion"friedman_mse"
sklearn.ensemble._gb.GradientBoostingClassifier(3)_initnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_learning_rate0.19305257290766425
sklearn.ensemble._gb.GradientBoostingClassifier(3)_loss"deviance"
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_depth3
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_featuresnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_leaf_nodes1708
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_impurity_decrease0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_impurity_splitnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_samples_leaf32
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_samples_split2
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_weight_fraction_leaf0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_n_estimators100
sklearn.ensemble._gb.GradientBoostingClassifier(3)_n_iter_no_change12
sklearn.ensemble._gb.GradientBoostingClassifier(3)_random_state47489
sklearn.ensemble._gb.GradientBoostingClassifier(3)_subsample1.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_tol0.0001
sklearn.ensemble._gb.GradientBoostingClassifier(3)_validation_fraction0.36654354333055433
sklearn.ensemble._gb.GradientBoostingClassifier(3)_verbose0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9996 ± 0.0003
Per class
Cross-validation details (10-fold Crossvalidation)
0.9855 ± 0.0083
Per class
Cross-validation details (10-fold Crossvalidation)
0.9685 ± 0.0171
Cross-validation details (10-fold Crossvalidation)
0.935 ± 0.011
Cross-validation details (10-fold Crossvalidation)
0.0211 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.229 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9855 ± 0.0078
Cross-validation details (10-fold Crossvalidation)
1728
Per class
Cross-validation details (10-fold Crossvalidation)
0.9856 ± 0.0074
Per class
Cross-validation details (10-fold Crossvalidation)
0.9855 ± 0.0078
Cross-validation details (10-fold Crossvalidation)
1.2058 ± 0.0088
Cross-validation details (10-fold Crossvalidation)
0.0921 ± 0.0138
Cross-validation details (10-fold Crossvalidation)
0.3381 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.0797 ± 0.0096
Cross-validation details (10-fold Crossvalidation)
0.2357 ± 0.0281
Cross-validation details (10-fold Crossvalidation)
0.9541 ± 0.0395
Cross-validation details (10-fold Crossvalidation)