Run
10574540

Run 10574540

Task 14968 (Supervised Classification) cylinder-bands Uploaded 01-12-2021 by Marc Boel
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Add a single new tag. Use underscores for spaces. Press enter when done.
Add tag
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,one hotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclass ifier=sklearn.tree._classes.DecisionTreeClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeclassifier", "step_name": "decisiontreeclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(2)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbose_feature_names_outtrue
sklearn.impute._base.SimpleImputer(28)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(28)_copytrue
sklearn.impute._base.SimpleImputer(28)_fill_valuenull
sklearn.impute._base.SimpleImputer(28)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(28)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(28)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(30)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(30)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(30)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(30)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(30)_sparsetrue
sklearn.tree._classes.DecisionTreeClassifier(23)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(23)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(23)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(23)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(23)_max_features0.763729493708732
sklearn.tree._classes.DecisionTreeClassifier(23)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(23)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(23)_min_samples_leaf10
sklearn.tree._classes.DecisionTreeClassifier(23)_min_samples_split8
sklearn.tree._classes.DecisionTreeClassifier(23)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(23)_random_state51721
sklearn.tree._classes.DecisionTreeClassifier(23)_splitter"random"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7737 ± 0.067
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.650.70.750.80.850.90.95
0.7206 ± 0.0599
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.60.650.70.750.80.85
0.4279 ± 0.1225
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.20.30.40.50.60.7
0.3415 ± 0.0932
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.20.250.30.350.40.450.50.…0.55
0.3253 ± 0.0437
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.2250.250.2750.30.3250.350.3750.4
0.4879 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4850.48550.4860.48650.4870.48750.4880.48850.489
0.7204 ± 0.0601
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.60.650.70.750.80.85
540
Per class
Cross-validation details (10-fold Crossvalidation)
0.7209 ± 0.0605
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.650.70.750.80.60.85
0.7204 ± 0.0601
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.60.650.70.750.80.85
0.9825 ± 0.0035
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.9740.9760.9780.980.9820.9840.…0.986
0.6667 ± 0.0901
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.450.50.550.60.650.70.750.8
0.4939 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4910.49150.4920.49250.4930.49350.4940.49450.495
0.4464 ± 0.0448
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.3250.350.3750.40.4250.450.4750.50.525
0.9039 ± 0.0914
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.650.70.750.80.850.90.9511…1.05
0.7143 ± 0.0618
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.60.650.70.750.80.85
­