Run
10571911

Run 10571911

Task 14965 (Supervised Classification) bank-marketing Uploaded 01-12-2021 by Marc Boel
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,one hotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclass ifier=sklearn.tree._classes.DecisionTreeClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeclassifier", "step_name": "decisiontreeclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(2)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbose_feature_names_outtrue
sklearn.impute._base.SimpleImputer(28)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(28)_copytrue
sklearn.impute._base.SimpleImputer(28)_fill_valuenull
sklearn.impute._base.SimpleImputer(28)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(28)_strategy"median"
sklearn.impute._base.SimpleImputer(28)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(30)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(30)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(30)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(30)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(30)_sparsetrue
sklearn.tree._classes.DecisionTreeClassifier(23)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(23)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(23)_criterion"entropy"
sklearn.tree._classes.DecisionTreeClassifier(23)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(23)_max_features0.5341472027545442
sklearn.tree._classes.DecisionTreeClassifier(23)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(23)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(23)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(23)_min_samples_split16
sklearn.tree._classes.DecisionTreeClassifier(23)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(23)_random_state35485
sklearn.tree._classes.DecisionTreeClassifier(23)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8008 ± 0.0085
Per class
Cross-validation details (10-fold Crossvalidation)
0.8839 ± 0.0048
Per class
Cross-validation details (10-fold Crossvalidation)
0.4249 ± 0.0241
Cross-validation details (10-fold Crossvalidation)
0.2032 ± 0.0281
Cross-validation details (10-fold Crossvalidation)
0.1221 ± 0.0039
Cross-validation details (10-fold Crossvalidation)
0.2066 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8867 ± 0.0047
Cross-validation details (10-fold Crossvalidation)
45211
Per class
Cross-validation details (10-fold Crossvalidation)
0.8815 ± 0.0049
Per class
Cross-validation details (10-fold Crossvalidation)
0.8867 ± 0.0047
Cross-validation details (10-fold Crossvalidation)
0.5206 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.5911 ± 0.0189
Cross-validation details (10-fold Crossvalidation)
0.3214 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3055 ± 0.0049
Cross-validation details (10-fold Crossvalidation)
0.9505 ± 0.0153
Cross-validation details (10-fold Crossvalidation)
0.7025 ± 0.012
Cross-validation details (10-fold Crossvalidation)