Run
10569479

Run 10569479

Task 3 (Supervised Classification) kr-vs-kp Uploaded 01-12-2021 by Marc Boel
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,one hotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingc lassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(25)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(25)_copytrue
sklearn.impute._base.SimpleImputer(25)_fill_valuenull
sklearn.impute._base.SimpleImputer(25)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(25)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(25)_verbose0
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(29)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(29)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(29)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(29)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(29)_sparsetrue
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_verbosefalse
sklearn.ensemble._gb.GradientBoostingClassifier(3)_ccp_alpha0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_criterion"friedman_mse"
sklearn.ensemble._gb.GradientBoostingClassifier(3)_initnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_learning_rate0.33696156596038224
sklearn.ensemble._gb.GradientBoostingClassifier(3)_loss"deviance"
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_depth3
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_featuresnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_max_leaf_nodes2009
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_impurity_decrease0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_impurity_splitnull
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_samples_leaf137
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_samples_split2
sklearn.ensemble._gb.GradientBoostingClassifier(3)_min_weight_fraction_leaf0.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_n_estimators100
sklearn.ensemble._gb.GradientBoostingClassifier(3)_n_iter_no_change15
sklearn.ensemble._gb.GradientBoostingClassifier(3)_random_state45812
sklearn.ensemble._gb.GradientBoostingClassifier(3)_subsample1.0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_tol0.0001
sklearn.ensemble._gb.GradientBoostingClassifier(3)_validation_fraction0.037124726833188
sklearn.ensemble._gb.GradientBoostingClassifier(3)_verbose0
sklearn.ensemble._gb.GradientBoostingClassifier(3)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9983 ± 0.0008
Per class
Cross-validation details (10-fold Crossvalidation)
0.9759 ± 0.0069
Per class
Cross-validation details (10-fold Crossvalidation)
0.9517 ± 0.0139
Cross-validation details (10-fold Crossvalidation)
0.927 ± 0.0115
Cross-validation details (10-fold Crossvalidation)
0.0402 ± 0.006
Cross-validation details (10-fold Crossvalidation)
0.499 ± 0
Cross-validation details (10-fold Crossvalidation)
0.9759 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
3196
Per class
Cross-validation details (10-fold Crossvalidation)
0.9759 ± 0.0068
Per class
Cross-validation details (10-fold Crossvalidation)
0.9759 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.9986 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.0806 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
0.4995 ± 0
Cross-validation details (10-fold Crossvalidation)
0.1266 ± 0.0144
Cross-validation details (10-fold Crossvalidation)
0.2535 ± 0.0288
Cross-validation details (10-fold Crossvalidation)
0.9758 ± 0.007
Cross-validation details (10-fold Crossvalidation)