Run
10568797

Run 10568797

Task 3485 (Supervised Classification) scene Uploaded 01-12-2021 by Marc Boel
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,one hotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclass ifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(25)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(25)_copytrue
sklearn.impute._base.SimpleImputer(25)_fill_valuenull
sklearn.impute._base.SimpleImputer(25)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(25)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(25)_verbose0
sklearn.tree._classes.DecisionTreeClassifier(20)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(20)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(20)_criterion"entropy"
sklearn.tree._classes.DecisionTreeClassifier(20)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(20)_max_features0.7971481813508173
sklearn.tree._classes.DecisionTreeClassifier(20)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(20)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(20)_min_impurity_splitnull
sklearn.tree._classes.DecisionTreeClassifier(20)_min_samples_leaf13
sklearn.tree._classes.DecisionTreeClassifier(20)_min_samples_split14
sklearn.tree._classes.DecisionTreeClassifier(20)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(20)_random_state20751
sklearn.tree._classes.DecisionTreeClassifier(20)_splitter"best"
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeclassifier", "step_name": "decisiontreeclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(29)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(29)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(29)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(29)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(29)_sparsetrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9425 ± 0.0251
Per class
Cross-validation details (10-fold Crossvalidation)
0.967 ± 0.0135
Per class
Cross-validation details (10-fold Crossvalidation)
0.8861 ± 0.0466
Cross-validation details (10-fold Crossvalidation)
0.8323 ± 0.0629
Cross-validation details (10-fold Crossvalidation)
0.0404 ± 0.0146
Cross-validation details (10-fold Crossvalidation)
0.2942 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.9676 ± 0.0134
Cross-validation details (10-fold Crossvalidation)
2407
Per class
Cross-validation details (10-fold Crossvalidation)
0.9672 ± 0.0138
Per class
Cross-validation details (10-fold Crossvalidation)
0.9676 ± 0.0134
Cross-validation details (10-fold Crossvalidation)
0.678 ± 0.0028
Cross-validation details (10-fold Crossvalidation)
0.1374 ± 0.0497
Cross-validation details (10-fold Crossvalidation)
0.3834 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.1718 ± 0.0359
Cross-validation details (10-fold Crossvalidation)
0.4481 ± 0.0942
Cross-validation details (10-fold Crossvalidation)
0.9286 ± 0.0228
Cross-validation details (10-fold Crossvalidation)